Advances in Differential Equations

The Cauchy problem for quasilinear hyperbolic equations with non-absolutely continuous coefficients in the time variable

Alessia Ascanelli

Full-text: Open access

Abstract

We consider the Cauchy problem \[\left\{ \begin{array}{lll} P\bigl(t,x,D^{m-1}u,D_{t},D_{x}\bigr)u(t,x)=f(t,x,D^{m-1}u) \\ \partial^j_{t} u(0,x)=u_{j}(x),\ \ \ j=0,...,m-1, \end{array} \right.\] in $[0,T]\times{\mathbb{R}}^n$ for a quasilinear weakly hyperbolic operator \[ P\bigl(t,x,D^{m-1}u,D_{t},D_{x}\bigr)=D_{t}^{m}+\sum_{j=0}^{m-1} \sum_{|\alpha|={m-j}}a_{\alpha}^{(j)}(t,x,D^{m-1}u)D_x^{\alpha}D_t^j\] with coefficients $a_{\alpha}^{(j)}$ having the first time derivative with singular behavior of the type $t^{-q}$, $q>1$, as $t\to 0$. We show that for $t\leq T_0^\ast$, $T_0^\ast$ sufficiently small, given Cauchy data in a Gevrey class $G^\sigma$ there exists a unique solution $u\in C^{m-1}([0,T_0^\ast];G^\sigma)$ provided that $\sigma < \frac{qr}{qr-1}$ where $r$ denotes the largest multiplicity of the characteristic roots.

Article information

Source
Adv. Differential Equations, Volume 10, Number 10 (2005), 1165-1181.

Dates
First available in Project Euclid: 18 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.ade/1355867808

Mathematical Reviews number (MathSciNet)
MR2162365

Zentralblatt MATH identifier
1122.35083

Subjects
Primary: 35L80: Degenerate hyperbolic equations
Secondary: 35L75: Nonlinear higher-order hyperbolic equations

Citation

Ascanelli, Alessia. The Cauchy problem for quasilinear hyperbolic equations with non-absolutely continuous coefficients in the time variable. Adv. Differential Equations 10 (2005), no. 10, 1165--1181. https://projecteuclid.org/euclid.ade/1355867808


Export citation