Advances in Differential Equations

$L^p$-regularity for elliptic operators with unbounded coefficients

G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt

Full-text: Open access


Under suitable conditions on the functions $a\in C^1({\mathbb R}^N,{\mathbb R}^{N^2})$, $F\in C^1({\mathbb R}^N,{\mathbb R}^N)$, and $V:{\mathbb R}^N\to [0,\infty)$, we show that the operator $Au=\nabla (a\nabla u) +F\cdot \nabla u-Vu$ with domain $W^{2,p}_V({\mathbb R}^N)= \{ u\in W^{2,p}({\mathbb R}^N):Vu\in L^p({\mathbb R}^N) \}$ generates a positive analytic semigroup on $L^p({\mathbb R}^N)$, $1 < p < \infty$. Analogous results are also established in the spaces $L^1({\mathbb R}^N)$ and $C_0({\mathbb R}^N)$. As an application we show that the generalized Ornstein--Uhlenbeck operator $A_{\Phi,G} u=\Delta u -\nabla \Phi \cdot \nabla u + G\cdot \nabla u$ with domain $W^{2,p}({\mathbb R}^N,\mu)$ generates an analytic semigroup on the weighted space $L^p({\mathbb R}^N,\mu)$, where $1 < p < \infty$ and $\mu(dx)=e^{-\Phi(x)}dx$.

Article information

Adv. Differential Equations, Volume 10, Number 10 (2005), 1131-1164.

First available in Project Euclid: 18 December 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35J70: Degenerate elliptic equations
Secondary: 35K65: Degenerate parabolic equations 47D06: One-parameter semigroups and linear evolution equations [See also 34G10, 34K30]


Metafune, G.; Prüss, J.; Schnaubelt, R.; Rhandi, A. $L^p$-regularity for elliptic operators with unbounded coefficients. Adv. Differential Equations 10 (2005), no. 10, 1131--1164.

Export citation