Advances in Differential Equations

Elliptic equations with decaying cylindrical potentials and power-type nonlinearities

Marino Badiale, Michela Guida, and Sergio Rolando

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We obtain existence, nonexistence and asymptotic results for solutions to cylindrical equations of the form: \[ -\triangle u+\frac{A}{\left| y\right| ^{\alpha }}u= f\left( u\right) ~\textrm{in }\mathbb{R}^{N},~ x=\left( y,z\right) \in \mathbb{R}^{k}\times \mathbb{R}^{N-k},~N>k\geq 2, \] where $A,\alpha>0$ and $f$ is continuous and satisfies power-type growth conditions.

Article information

Source
Adv. Differential Equations Volume 12, Number 12 (2007), 1321-1362.

Dates
First available in Project Euclid: 18 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.ade/1355867405

Mathematical Reviews number (MathSciNet)
MR2382728

Zentralblatt MATH identifier
1158.35032

Subjects
Primary: 35J60: Nonlinear elliptic equations
Secondary: 35J20: Variational methods for second-order elliptic equations 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10] 47J30: Variational methods [See also 58Exx]

Citation

Badiale, Marino; Guida, Michela; Rolando, Sergio. Elliptic equations with decaying cylindrical potentials and power-type nonlinearities. Adv. Differential Equations 12 (2007), no. 12, 1321--1362. https://projecteuclid.org/euclid.ade/1355867405.


Export citation