## Advances in Differential Equations

- Adv. Differential Equations
- Volume 14, Number 7/8 (2009), 685-715.

### $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains

Robert Denk, Reinhard Racke, and Yoshihiro Shibata

#### Abstract

The paper is concerned with linear thermoelastic plate equations in a domain $\Omega$: $$ u_{tt} + \Delta^2u+ \Delta \theta = 0 \ \text{ and }\ \theta_t - \Delta\theta - \Delta u_t = 0 \quad\text{in $\Omega\times(0, \infty)$}, $$ subject to the Dirichlet boundary condition $u|_\Gamma = D_\nu u|_\Gamma = \theta|_\Gamma = 0$ and initial condition $(u, u_t, \theta)|_{t=0} = (u_0, v_0, \theta_0) \in W^2_{p, D}(\Omega)\times L_p\times L_p$. Here, $\Omega$ is a bounded or exterior domain in ${{\mathbb R}}^n$ ($n\geq2$). We assume that the boundary $\Gamma$ of $\Omega$ is a $C^4$ hypersurface and we define $W^2_{p, D}$ by the formula $W^2_{p, D} = \{ u \in W^2_p : u|_\Gamma = D_\nu u|_\Gamma = 0\}$. We show that, for any $p \in (1, \infty)$, the associated semigroup $\{T(t)\}_{t\geq0}$ is analytic. Moreover, if $\Omega$ is bounded, then $\{T(t)\}_{t\geq0}$ is exponentially stable.

#### Article information

**Source**

Adv. Differential Equations Volume 14, Number 7/8 (2009), 685-715.

**Dates**

First available in Project Euclid: 18 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1355867231

**Mathematical Reviews number (MathSciNet)**

MR2527690

**Zentralblatt MATH identifier**

1182.35034

**Subjects**

Primary: 35B40: Asymptotic behavior of solutions 35Q72 74F05: Thermal effects

#### Citation

Denk, Robert; Racke, Reinhard; Shibata, Yoshihiro. $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains. Adv. Differential Equations 14 (2009), no. 7/8, 685--715.https://projecteuclid.org/euclid.ade/1355867231