## Advances in Differential Equations

- Adv. Differential Equations
- Volume 16, Number 9/10 (2011), 895-916.

### Well-posedness of nonlinear parabolic problems with nonlinear Wentzell boundary conditions

Giuseppe Maria Coclite, Gisèle Ruiz Goldstein, and Jerome A. Goldstein

#### Abstract

Of concern is the nonlinear parabolic problem with nonlinear dynamic boundary conditions \begin{align*} & u_t +\,{\rm div}(F(u))=\,{\rm div}({\mathcal A}\nabla u),\qquad u(0,x)=f(x), \\ & u_t +\beta{{{\partial}^{\mathcal A}_{\nu}}} u+\gamma(x, u)-q\beta {\Delta_{\rm LB}} u=0, \end{align*} for $x\in \Omega\subset \mathbb R^N$ and $t\ge0$; the last equation holds on the boundary ${\partial}\Omega$. Here ${\mathcal A}=\{a_{ij}(x)\}_{ij}$ is a real, Hermitian, uniformly positive definite $N\times N$ matrix; $F\in C^1(\mathbb R^N;\mathbb R^N)$ is Lipschitz continuous; $\beta\in C({\partial}\Omega)$, with $\beta>0$; $\gamma:{\partial}\Omega\times\mathbb R\to \mathbb R; \,q\ge 0$; and ${{{\partial}^{\mathcal A}_{\nu}}} u$ is the conormal derivative of $u$ with respect to $A$; everything is sufficiently regular. Here we prove the well-posedness of the problem. Moreover, we prove explicit stability estimates of the solution $u$ with respect to the coefficients ${\mathcal A},$ $ F,$ $\beta,$ $\gamma,$ $q,$ and the initial condition $f$. Our estimates cover the singular case of a problem with $q=0$ which is approximated by problems with positive $q$.

#### Article information

**Source**

Adv. Differential Equations Volume 16, Number 9/10 (2011), 895-916.

**Dates**

First available in Project Euclid: 17 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1355703180

**Mathematical Reviews number (MathSciNet)**

MR2850757

**Zentralblatt MATH identifier**

1231.35102

**Subjects**

Primary: 35K05: Heat equation 47H02 35K60: Nonlinear initial value problems for linear parabolic equations

#### Citation

Coclite, Giuseppe Maria; Goldstein, Gisèle Ruiz; Goldstein, Jerome A. Well-posedness of nonlinear parabolic problems with nonlinear Wentzell boundary conditions. Adv. Differential Equations 16 (2011), no. 9/10, 895--916.https://projecteuclid.org/euclid.ade/1355703180