## Advances in Differential Equations

- Adv. Differential Equations
- Volume 16, Number 9/10 (2011), 801-837.

### Existence and multiplicity results for equations with nearly critical growth

Francesca Gladiali and Massimo Grossi

#### Abstract

We consider the problem \begin{equation}\nonumber \left\{ \begin{array}{ll} -\Delta u=K(x)u^{p_{\epsilon}} & \hbox{ in }\mathbb R^n\\ u>0 & \hbox{ in }\mathbb R^n \end{array}\right. \end{equation} where $p=\frac{n+2}{n-2}$, $p_{\epsilon}=p-\epsilon$, $n\geq 3$, $\epsilon>0$ and $K(x)>0$ in $\mathbb R^n$. We prove an existence and multiplicity result for single peaked solutions of our problem concentrating at a fixed critical point of $K(x)$ and some other related results.

#### Article information

**Source**

Adv. Differential Equations Volume 16, Number 9/10 (2011), 801-837.

**Dates**

First available in Project Euclid: 17 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1355703177

**Mathematical Reviews number (MathSciNet)**

MR2850754

**Zentralblatt MATH identifier**

1232.35018

**Subjects**

Primary: 35A01: Existence problems: global existence, local existence, non-existence 35A02: Uniqueness problems: global uniqueness, local uniqueness, non- uniqueness

#### Citation

Gladiali, Francesca; Grossi, Massimo. Existence and multiplicity results for equations with nearly critical growth. Adv. Differential Equations 16 (2011), no. 9/10, 801--837.https://projecteuclid.org/euclid.ade/1355703177