Advances in Differential Equations

The Navier-Stokes equations and weak Herz spaces

Yohei Tsutsui

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we discuss the Cauchy problem for Navier-Stokes equations in homogeneous weak Herz spaces $W{\dot{K}}^\alpha_{p,q}({\mathbb{R^{\textit{n}}}})$. More precisely, we construct the solution in the class $L^\infty(0,T; W{\dot{K}}^\alpha_{p,q})$ with the initial data in $W{\dot{K}}^\alpha_{p,q}$. Further, we consider the blow-up phenomena of time-local solutions and the uniqueness of global solutions with large initial data in $W{\dot{K}}^\alpha_{p,q}$. Also, we give several embeddings of weak Herz spaces into homogeneous Besov spaces $B^{-\alpha}_{p,\infty}({\mathbb{R^{\textit{n}}}})\ (\alpha >0),$ or $bmo^{-1}({\mathbb{R^{\textit{n}}}})$.

Article information

Adv. Differential Equations, Volume 16, Number 11/12 (2011), 1049-1085.

First available in Project Euclid: 17 December 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10] 76D05: Navier-Stokes equations [See also 35Q30]


Tsutsui, Yohei. The Navier-Stokes equations and weak Herz spaces. Adv. Differential Equations 16 (2011), no. 11/12, 1049--1085.

Export citation