Acta Mathematica

Non-realizability and ending laminations: Proof of the density conjecture

Hossein Namazi and Juan Souto

Full-text: Open access


We give a complete proof of the Bers–Sullivan–Thurston density conjecture. In the light of the ending lamination theorem, it suffices to prove that any collection of possible ending invariants is realized by some algebraic limit of geometrically finite hyperbolic manifolds. The ending invariants are either Riemann surfaces or filling laminations supporting Masur domain measured laminations and satisfying some mild additional conditions. With any set of ending invariants we associate a sequence of geometrically finite hyperbolic manifolds and prove that this sequence has a convergent subsequence. We derive the necessary compactness theorem combining the Rips machine with non-existence results for certain small actions on real trees of free products of surface groups and free groups. We prove then that the obtained algebraic limit has the desired conformal boundaries and the property that none of the filling laminations is realized by a pleated surface. In order to be able to apply the ending lamination theorem, we have to prove that this algebraic limit has the desired topological type and that these non-realized laminations are ending laminations. That this is the case is the main novel technical result of this paper. Loosely speaking, we show that a filling Masur domain lamination which is not realized is an ending lamination.

Article information

Acta Math., Volume 209, Number 2 (2012), 323-395.

Received: 17 April 2010
Revised: 8 May 2012
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2012 © Institut Mittag-Leffler


Namazi, Hossein; Souto, Juan. Non-realizability and ending laminations: Proof of the density conjecture. Acta Math. 209 (2012), no. 2, 323--395. doi:10.1007/s11511-012-0088-0.

Export citation


  • Agol, I., Tameness of hyperbolic 3-manifolds. Preprint, 2004.
  • Anderson, J. W. & Canary, R. D., Algebraic limits of Kleinian groups which rear-range the pages of a book. Invent. Math., 126 (1996), 205–214.
  • — Cores of hyperbolic 3-manifolds and limits of Kleinian groups. II. J. London Math. Soc., 61 (2000), 489–505.
  • Benedetti, R. & Petronio, C., Lectures on Hyperbolic Geometry. Universitext. Springer, Berlin–Heidelberg, 1992.
  • Bers, L., On boundaries of Teichmüller spaces and on Kleinian groups. I. Ann. of Math., 91 (1970), 570–600.
  • Bers, L. & Maskit, B., On a class of Kleinian groups, in Contemporary Problems in the Theory of Analytic Functions (Erevan, 1965), pp. 44–47. Izdat. "Nauka", Moscow, 1966 (Russian).
  • Bestvina, M., Degenerations of the hyperbolic space. Duke Math. J., 56 (1988), 143–161.
  • Bestvina, M. & Feighn, M., Stable actions of groups on real trees. Invent. Math., 121 (1995), 287–321.
  • Bonahon, F., Cobordism of automorphisms of surfaces. Ann. Sci. École Norm. Sup., 16 (1983), 237–270.
  • — Bouts des variétés hyperboliques de dimension 3. Ann. of Math., 124 (1986), 71–158.
  • — The geometry of Teichmüller space via geodesic currents. Invent. Math., 92 (1988), 139–162.
  • Brock, J. F., Continuity of Thurston’s length function. Geom. Funct. Anal., 10 (2000), 741–797.
  • — The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J. Amer. Math. Soc., 16 (2003), 495–535.
  • Brock, J. F. & Bromberg, K. W., On the density of geometrically finite Kleinian groups. Acta Math., 192 (2004), 33–93.
  • Brock, J. F., Canary, R. D. & Minsky, Y. N., The classification of Kleinian surface groups II: The ending lamination conjecture. Preprint, 2004.
  • Bromberg, K., Projective structures with degenerate holonomy and the Bers density conjecture. Ann. of Math., 166 (2007), 77–93.
  • Calegari, D. & Gabai, D., Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Amer. Math. Soc., 19 (2006), 385–446.
  • Canary, R. D., The Poincaré metric and a conformal version of a theorem of Thurston. Duke Math. J., 64 (1991), 349–359.
  • — Algebraic convergence of Schottky groups. Trans. Amer. Math. Soc., 337 (1993), 235–258.
  • — Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc., 6 (1993), 1–35.
  • Canary, R. D., Epstein, D. B. A. & Green, P., Notes on notes of Thurston, in Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., 111, pp. 3–92. Cambridge University Press, Cambridge, 1987.
  • Canary, R. D. & McCullough, D., Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups. Mem. Amer. Math. Soc., 172:812 (2004).
  • Casson, A. J. & Bleiler, S. A., Automorphisms of Surfaces after Nielsen and Thurston. London Math. Soc. Student Texts, 9. Cambridge University Press, Cambridge, 1988.
  • Corlette, K., Archimedean superrigidity and hyperbolic geometry. Ann. of Math., 135 (1992), 165–182.
  • Epstein, D. B. A. & Marden, A., Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, in Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., 111, pp. 113–253. Cambridge University Press, Cambridge, 1987.
  • Fathi, A., Laundenbach, F. & Poénaru, V. (eds.), Travaux de Thurston sur les surfaces. Astérisque, 66. Société Mathématique de France, Paris, 1979.
  • Gabai, D., The simple loop conjecture. J. Differential Geom., 21 (1985), 143–149.
  • Greenberg, L., Fundamental polyhedra for kleinian groups. Ann. of Math., 84 (1966), 433–441.
  • Hempel, J., 3-Manifolds. Ann. of Math. Studies, 86. Princeton University Press, Princeton, NJ, 1976.
  • Jaco, W., Lectures on Three-Manifold Topology. CBMS Regional Conference Series in Mathematics, 43. Amer. Math. Soc., Providence, RI, 1980.
  • Johannson, K., Homotopy Equivalences of 3-Manifolds with Boundaries. Lecture Notes in Mathematics, 761. Springer, Berlin–Heidelberg, 1979.
  • Jørgensen, T., Compact 3-manifolds of constant negative curvature fibering over the circle. Ann. of Math., 106 (1977), 61–72.
  • Kapovich, M., Hyperbolic Manifolds and Discrete Groups. Progress in Mathematics, 183. Birkhäuser, Boston, MA, 2001.
  • Kerckhoff, S. P., The measure of the limit set of the handlebody group. Topology, 29 (1990), 27–40.
  • Kim, I., Lecuire, C. & Ohshika, K., Convergence of freely decomposable Kleinian groups. Preprint, 2007.
  • Klarreich, E., The boundary at infinity of the curve complex and the relative Teichmüller space. Preprint, 1999.
  • Kleineidam, G. & Souto, J., Algebraic convergence of function groups. Comment. Math. Helv., 77 (2002), 244–269.
  • — Ending laminations in the Masur domain, in Kleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), London Math. Soc. Lecture Note Ser., 299, pp. 105–129. Cambridge University Press, Cambridge, 2003.
  • Lecuire, C., Plissage des variétés hyperboliques de dimension 3. Invent. Math., 164 (2006), 85–141.
  • — An extension of the Masur domain, in Spaces of Kleinian Groups, London Math. Soc. Lecture Note Ser., 329, pp. 49–73. Cambridge University Press, Cambridge, 2006.
  • Marden, A., Outer Circles. Cambridge University Press, Cambridge, 2007.
  • Maskit, B., On free Kleinian groups. Duke Math. J., 48 (1981), 755–765.
  • Masur, H. A., Measured foliations and handlebodies. Ergodic Theory Dynam. Systems, 6 (1986), 99–116.
  • Masur, H. A. & Minsky, Y. N., Geometry of the complex of curves. I. Hyperbolicity. Invent. Math., 138 (1999), 103–149.
  • — Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal., 10 (2000), 902–974.
  • Matsuzaki, K. & Taniguchi, M., Hyperbolic Manifolds and Kleinian Groups. Oxford Mathematical Monographs. Oxford University Press, New York, 1998.
  • Minsky, Y. N., Teichmüller geodesics and ends of hyperbolic 3-manifolds. Topology, 32 (1993), 625–647.
  • — The classification of Kleinian surface groups. I. Models and bounds. Ann. of Math., 171 (2010), 1–107.
  • Morgan, J. W., On Thurston’s uniformization theorem for three-dimensional manifolds, in The Smith Conjecture (New York, 1979), Pure Appl. Math., 112, pp. 37–125. Academic Press, Orlando, FL, 1984.
  • Morgan, J. W. & Shalen, P. B., Valuations, trees, and degenerations of hyperbolic structures. I. Ann. of Math., 120 (1984), 401–476.
  • Ohshika, K., Ending laminations and boundaries for deformation spaces of Kleinian groups. J. London Math. Soc., 42 (1990), 111–121.
  • — Strong convergence of Kleinian groups and Carathéodory convergence of domains of discontinuity. Math. Proc. Cambridge Philos. Soc., 112 (1992), 297–307.
  • — Realising end invariants by limits of minimally parabolic, geometrically finite groups. Geom. Topol., 15 (2011), 827–890.
  • Otal, J.-P., Courants géodésiques et produits libres. Thèse d’Etat, Université Paris-Sud, Orsay, 1988.
  • — Sur la dégénérescence des groupes de Schottky. Duke Math. J., 74 (1994), 777–792.
  • — Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3. Astérisque, 235 (1996).
  • — Thurston’s hyperbolization of Haken manifolds, in Surveys in Differential Geometry, Vol. III (Cambridge, MA, 1996), pp. 77–194. Int. Press, Boston, MA, 1998.
  • Paulin, F., Topologie de Gromov équivariante, structures hyperboliques et arbres réels. Invent. Math., 94 (1988), 53–80.
  • Penner, R. C. & Harer, J. L., Combinatorics of Train Tracks. Annals of Mathematics Studies, 125. Princeton University Press, Princeton, NJ, 1992.
  • Sacks, J. & Uhlenbeck, K., Minimal immersions of closed Riemann surfaces. Trans. Amer. Math. Soc., 271 (1982), 639–652.
  • Skora, R. K., Splittings of surfaces. Bull. Amer. Math. Soc., 23 (1990), 85–90.
  • — Splittings of surfaces. J. Amer. Math. Soc., 9 (1996), 605–616.
  • Sullivan, D., A finiteness theorem for cusps. Acta Math., 147 (1981), 289–299.
  • — Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups. Acta Math., 155 (1985), 243–260.
  • Thurston, W. P., The geometry and topology of 3-manifolds. Unpublished lecture notes, 1979.
  • — Hyperbolic structures on 3-manifolds, III: Deformations of 3-manifolds with incompressible boundary. Preprint, 1998.
  • Tucker, T. W., Boundary-reducible 3-manifolds and Waldhausen’s theorem. Michigan Math. J., 20 (1973), 321–327.