Acta Mathematica

Discrete series characters for affine Hecke algebras and their formal degrees

Eric Opdam and Maarten Solleveld

Full-text: Open access

Abstract

We introduce the generic central character of an irreducible discrete series representation of an affine Hecke algebra. Using this invariant we give a new classification of the irreducible discrete series characters for all abstract affine Hecke algebras (except for the types ${E_{n}^{(1)}}$ , n=6, 7, 8) with arbitrary positive parameters and we prove an explicit product formula for their formal degrees (in all cases).

Article information

Source
Acta Math., Volume 205, Number 1 (2010), 105-187.

Dates
Received: 18 June 2008
Revised: 31 March 2009
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485892484

Digital Object Identifier
doi:10.1007/s11511-010-0052-9

Mathematical Reviews number (MathSciNet)
MR2736154

Zentralblatt MATH identifier
1214.20008

Subjects
Primary: 20C08; Secondary 22D25
Secondary: 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.

Keywords
affine Hecke algebra discrete series character formal dimension

Rights
2010 © Institut Mittag-Leffler

Citation

Opdam, Eric; Solleveld, Maarten. Discrete series characters for affine Hecke algebras and their formal degrees. Acta Math. 205 (2010), no. 1, 105--187. doi:10.1007/s11511-010-0052-9. https://projecteuclid.org/euclid.acta/1485892484


Export citation

References

  • Aubert, A. M., Baum, P. & Plymen, R., The Hecke algebra of a reductive p-adic group: a geometric conjecture, in Noncommutative Geometry and Number Theory, Aspects Math., E37, pp. 1–34. Vieweg, Wiesbaden, 2006.
  • Barbasch, D. & Moy, A., A unitarity criterion for p-adic groups . Invent. Math., 98 (1989), 19–37.
  • — Reduction to real infinitesimal character in affine Hecke algebras. J. Amer. Math. Soc., 6 (1993), 611–635.
  • Bernstein, I. N. & Zelevinsky, A. V., Induced representations of reductive p-adic groups. I. Ann. Sci. Ecole Norm. Sup., 10 (1977), 441–472.
  • Blackadar, B., Kumjian, A. & Rørdam, M., Approximately central matrix units and the structure of noncommutative tori. K-Theory, 6 (1992), 267–284.
  • Blondel, C., Propagation de paires couvrantes dans les groupes symplectiques . Represent. Theory, 10 (2006), 399–434.
  • Borel, A., Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Invent. Math., 35 (1976), 233–259.
  • Bushnell, C. J., Henniart, G. & Kutzko, P. C., Towards an explicit Plancherel formula for reductive p-adic groups. Preprint, 2001.
  • Bushnell, C. J. & Kutzko, P. C., Types in reductive p-adic groups: the Hecke algebra of a cover. Proc. Amer. Math. Soc., 129 (2001), 601–607.
  • Carter, R. W., Finite Groups of Lie Type. Wiley, New York, 1985.
  • Cherednik, I., Double affine Hecke algebras and Macdonald’s conjectures. Ann. of Math., 141 (1995), 191–216.
  • Delorme, P. & Opdam, E. M., The Schwartz algebra of an affine Hecke algebra. J. Reine Angew. Math., 625 (2008), 59–114.
  • Emsiz, E., Opdam, E. M. & Stokman, J. V., Periodic integrable systems with delta-potentials. Comm. Math. Phys., 264 (2006), 191–225.
  • Geck, M., On the representation theory of Iwahori–Hecke algebras of extended finite Weyl groups. Represent. Theory, 4 (2000), 370–397.
  • Heckman, G. J. & Opdam, E. M., Yang’s system of particles and Hecke algebras. Ann. of Math., 145 (1997), 139–173.
  • — Harmonic analysis for affine Hecke algebras, in Current Developments in Mathematics (Cambridge, MA, 1996), pp. 37–60. International Press, Boston, MA, 1997.
  • Humphreys, J. E., Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, 9. Springer, New York, 1978.
  • Iwahori, N. & Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups . Inst. Hautes Études Sci. Publ. Math., 25 (1965), 5–48.
  • Kato, S., An exotic Deligne–Langlands correspondence for symplectic groups. Duke Math. J., 148 (2009), 305–371.
  • Kazhdan, D. & Lusztig, G., Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math., 87 (1987), 153–215.
  • Lusztig, G., Cells in affine Weyl groups, in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, pp. 255–287. North-Holland, Amsterdam, 1985.
  • — Affine Hecke algebras and their graded version. J. Amer. Math. Soc., 2 (1989), 599–635.
  • — Classification of unipotent representations of simple p-adic groups. Int. Math. Res. Not., 1995 (1995), 517–589.
  • — Cuspidal local systems and graded Hecke algebras. II, in Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, pp. 217–275. Amer. Math. Soc., Providence, RI, 1995.
  • — Cuspidal local systems and graded Hecke algebras. III. Represent. Theory, 6 (2002), 202–242.
  • Hecke Algebras with Unequal Parameters. CRM Monograph Series, 18. Amer. Math. Soc., Providence, RI, 2003.
  • Macdonald, I. G., Spherical Functions on a Group of p-adic Type. Publications of the Ramanujan Institute, 2. Ramanujan Institute, Centre for Advanced Study in Mathematics, University of Madras, Madras, 1971.
  • Matsumoto, H., Analyse harmonique dans les systèmes de Tits bornologiques de type affine. Lecture Notes in Mathematics, 590. Springer, Berlin–Heidelberg, 1977.
  • Morris, L., Tamely ramified intertwining algebras. Invent. Math., 114 (1993), 1–54.
  • — Level zero G-types. Compositio Math., 118 (1999), 135–157.
  • Opdam, E. & Solleveld, M., Homological algebra for affine Hecke algebras. Adv. Math., 220 (2009), 1549–1601.
  • Opdam, E. M., On the spectral decomposition of affine Hecke algebras. J. Inst. Math. Jussieu, 3 (2004), 531–648.
  • — Hecke algebras and harmonic analysis, in International Congress of Mathematicians. Vol. II, pp. 1227–1259. Eur. Math. Soc., Zürich, 2006.
  • — The central support of the Plancherel measure of an affine Hecke algebra. Mosc. Math. J., 7 (2007), 723–741, 767–768.
  • Phillips, N. C., K-theory for Fréchet algebras. Internat. J. Math., 2 (1991), 77–129.
  • Ram, A. & Ramagge, J., Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory, in A Tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pp. 428–466. Birkhäuser, Basel, 2003.
  • Reeder, M., Formal degrees and L-packets of unipotent discrete series representations of exceptional p-adic groups. J. Reine Angew. Math., 520 (2000), 37–93.
  • — Euler–Poincaré pairings and elliptic representations of Weyl groups and p-adic groups. Compositio Math., 129 (2001), 149–181.
  • Schneider, P. & Stuhler, U., Representation theory and sheaves on the Bruhat–Tits building. Inst. Hautes Études Sci. Publ. Math., 85 (1997), 97–191.
  • Slooten, K., A Combinatorial Generalization of the Springer Correspondence for Classical Type. Ph.D. Thesis, University of Amsterdam, Amsterdam, 2003.
  • — Generalized Springer correspondence and Green functions for type B/C graded Hecke algebras. Adv. Math., 203 (2006), 34–108.
  • Solleveld, M. S., Periodic Cyclic Homology of Affine Hecke Algebras. Ph.D. Thesis, University of Amsterdam, Amsterdam, 2007.
  • Takesaki, M., Theory of Operator Algebras. I. Springer, New York, 1979.
  • Vignéras, M. F., On formal dimensions for reductive p-adic groups, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday (Ramat Aviv, 1989), Part I, Israel Math. Conf. Proc., 2, pp. 225–266. Weizmann, Jerusalem, 1990.
  • Waldspurger, J. L., La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu, 2 (2003), 235–333.