Acta Mathematica

Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane

Michael T. Lacey, Eric T. Sawyer, and Ignacio Uriarte-Tuero

Full-text: Open access

Abstract

Let $ E \subset \mathbb{C} $ be a compact set, $ g:\mathbb{C} \to \mathbb{C} $ be a K-quasiconformal map, and let 0 < t < 2. Let $ {\mathcal{H}^t} $ denote t-dimensional Hausdorff measure. Then $ {\mathcal{H}^t}(E) = 0\quad \Rightarrow \quad {\mathcal{H}^{t'}}\left( {gE} \right) = 0,\quad t' = \frac{{2Kt}}{{2 + \left( {K - 1} \right)t}}. $

This is a refinement of a set of inequalities on the distortion of Hausdorff dimensions by quasiconformal maps proved by K. Astala in [2] and answers in the positive a conjecture of K. Astala in op. cit.

Note

M.T. Lacey was supported in part by a grant from the NSF.

E. T. Sawyer was supported in part by a grant from the NSERC.

Article information

Source
Acta Math., Volume 204, Number 2 (2010), 273-292.

Dates
Received: 11 June 2008
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485892470

Digital Object Identifier
doi:10.1007/s11511-010-0048-5

Mathematical Reviews number (MathSciNet)
MR2653055

Zentralblatt MATH identifier
1211.30036

Subjects
Primary: 30C62: Quasiconformal mappings in the plane 35J15: Second-order elliptic equations 35J70: Degenerate elliptic equations

Keywords
Quasiconformal Hausdorff measure Removability

Rights
2010 © Institut Mittag-Leffler

Citation

Lacey, Michael T.; Sawyer, Eric T.; Uriarte-Tuero, Ignacio. Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane. Acta Math. 204 (2010), no. 2, 273--292. doi:10.1007/s11511-010-0048-5. https://projecteuclid.org/euclid.acta/1485892470


Export citation

References

  • A hlfors, L. V., Lectures on Quasiconformal Mappings. University Lecture Series, 38. Amer. Math. Soc., Providence, RI, 2006.
  • A stala, K., Area distortion of quasiconformal mappings. Acta Math., 173 (1994), 37–60.
  • A stala, K., C lop, A., M ateu, J., O robitg, J. & U riarte-T uero, I., Distortion of Hausdorff measures and improved Painlevé removability for quasiregular mappings. Duke Math. J., 141 (2008), 539–571.
  • A stala, K., I waniec, T. & M artin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009.
  • A stala, K., I waniec, T. & S aksman, E., Beltrami operators in the plane. Duke Math. J., 107 (2001), 27–56.
  • A stala, K. & N esi, V., Composites and quasiconformal mappings: new optimal bounds in two dimensions. Calc. Var. Partial Differential Equations, 18 (2003), 335–355.
  • B ishop, C. J., Distortion of disks by conformal maps. Preprint, 2006.
  • F alconer, K. J., The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986.
  • G arcía-C uerva, J. & R ubio de F rancia, J. L., Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116. North-Holland, Amsterdam, 1985.
  • G ehring, F. W. & R eich, E., Area distortion under quasiconformal mappings. Ann. Acad. Sci. Fenn. Math., 388 (1966), 15.
  • I waniec, T. & M artin, G., Quasiconformal mappings and capacity. Indiana Univ. Math. J., 40 (1991), 101–122.
  • L ehto, O., Univalent Functions and Teichmüller Spaces. Graduate Texts in Mathematics, 109. Springer, New York, 1987.
  • M attila, P., Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
  • M ori, A., On an absolute constant in the theory of quasi-conformal mappings. J. Math. Soc. Japan, 8 (1956), 156–166.
  • M uscalu, C., T ao, T. & T hiele, C., Multi-linear operators given by singular multipliers. J. Amer. Math. Soc., 15 (2002), 469–496.
  • N azarov, F., T reil, S. & V olberg, A., The Tb-theorem on non-homogeneous spaces. Acta Math., 190 (2003), 151–239.
  • O robitg, J. & P érez, C., Ap weights for nondoubling measures in Rn and applications. Trans. Amer. Math. Soc., 354:5 (2002), 2013–2033.
  • P ommerenke, C., Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer, Berlin–Heidelberg, 1992.
  • P rause, I., On distortion of Hausdorff measures under quasiconformal mappings. Conform. Geom. Dyn., 11 (2007), 219–223.
  • S aksman, E., The local mapping properties of the Hilbert transform. Preprint, 1999.
  • S tein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993.
  • S tein, E. M. & W eiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, 32. Princeton University Press, Princeton, NJ, 1971.
  • T olsa, X., Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math., 190 (2003), 105–149.
  • T olsa, X., Weighted norm inequalities for Calderón–Zygmund operators without doubling conditions. Publ. Mat., 51 (2007), 397–456.
  • U riarte-T uero, I., Sharp examples for planar quasiconformal distortion of Hausdorff measures and removability. Int. Math. Res. Not. IMRN, (2008), Art. ID rnn047.