Acta Mathematica

Contour lines of the two-dimensional discrete Gaussian free field

Oded Schramm and Scott Sheffield

Full-text: Open access


We prove that the chordal contour lines of the discrete Gaussian free field converge to forms of SLE(4). Specifically, there is a constant λ > 0 such that when h is an interpolation of the discrete Gaussian free field on a Jordan domain—with boundary values −λ on one boundary arc and λ on the complementary arc—the zero level line of h joining the endpoints of these arcs converges to SLE(4) as the domain grows larger. If instead the boundary values are −a < 0 on the first arc and b > 0 on the complementary arc, then the convergence is to SLE(4; a/λ - 1, b/λ - 1), a variant of SLE(4).


During the revision process of this article, Oded Schramm unexpectedly died. I am deeply indebted for all I learned working with him, for his profound personal warmth, for his legendary vision and skill. There was never a better colleague, never a better friend. He will be dearly missed. (Scott Sheffield)

Article information

Acta Math. Volume 202, Number 1 (2009), 21-137.

Received: 18 October 2006
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

2009 © Institut Mittag-Leffler


Schramm, Oded; Sheffield, Scott. Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202 (2009), no. 1, 21--137. doi:10.1007/s11511-009-0034-y.

Export citation


  • A hlfors, L. V., Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973.
  • B effara, V., The dimension of the SLE curves. Ann. Probab., 36:4 (2008), 1421–1452.
  • B elavin, A. A., P olyakov, A. M. & Z amolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B, 241 (1984), 333–380.
  • B ricmont, J., E l M ellouki, A. & F röhlich, J., Random surfaces in statistical mechanics: roughening, rounding, wetting,…. J. Stat. Phys., 42:5–6 (1986), 743–798.
  • C amia, F. & N ewman, C. M., Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys., 268 (2006), 1–38.
  • C ardy, J., SLE for theoretical physicists. Ann. Physics, 318 (2005), 81–118.
  • C oniglio, A., Fractal structure of Ising and Potts clusters: exact results. Phys. Rev. Lett., 62:26 (1989), 3054–3057.
  • D i F rancesco, P., M athieu, P. & S énéchal, D., Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York, 1997.
  • D oyle, P. G. & S nell, J. L., Random Walks and Electric Networks. Carus Mathematical Monographs, 22. Mathematical Association of America, Washington, DC, 1984.
  • D uplantier, B., Two-dimensional fractal geometry, critical phenomena and conformal invariance. Phys. Rep., 184 (1989), 229–257.
  • D uplantier, B. & S aleur, H., Exact critical properties of two-dimensional dense self-avoiding walks. Nuclear Phys. B, 290 (1987), 291–326.
  • — Winding-angle distributions of two-dimensional self-avoiding walks from conformal invariance. Phys. Rev. Lett., 60:23 (1988), 2343–2346.
  • F oltin, G., An alternative field theory for the Kosterlitz–Thouless transition. J. Phys. A, 34:26 (2001), 5327–5333.
  • F röhlich, J. & S pencer, T., The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Comm. Math. Phys., 81 (1981), 527–602.
  • G ȩdzki, K., Lectures on conformal field theory, in Quantum Fields and Strings: a Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 727–805. Amer. Math. Soc., Providence, RI, 1999.
  • G iacomin, G., Limit theorems for random interface models of Ginzburg–Landau ∇ϕ type, in Stochastic Partial Differential Equations and Applications (Trento, 2002), Lecture Notes in Pure and Appl. Math., 227, pp. 235–253. Dekker, New York, 2002.
  • G limm, J. & J affe, A., Quantum Physics. Springer, New York, 1987.
  • H uber, G. & K ondev, J., Passive-scalar turbulence and the geometry of loops. Bull. Amer. Phys. Soc., DCOMP Meeting 2001, Q2.008.
  • I sichenko, M. B., Percolation, statistical topography, and transport in random media. Rev. Modern Phys., 64:4 (1992), 961–1043.
  • K adanoff, L. P., Lattice Coulomb gas representations of two-dimensional problems. J. Phys. A, 11:7 (1978), 1399–1417.
  • K ager, W. & N ienhuis, B., A guide to stochastic Löwner evolution and its applications. J. Stat. Phys., 115:5–6 (2004), 1149–1229.
  • K aratzas, I. & S hreve, S. E., Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 113. Springer, New York, 1988.
  • K enyon, R., Dominos and the Gaussian free field. Ann. Probab., 29:3 (2001), 1128–1137.
  • K ondev, J., D u, S. & H uber, G., Two-dimensional passive-scalar turbulence and the geometry of loops. Bull. Amer. Phys. Soc., March Meeting 2002, U4.003.
  • K ondev, J. & H enley, C. L., Geometrical exponents of contour loops on random Gaussian surfaces. Phys. Rev. Lett., 74:23 (1995), 4580–4583.
  • K ondev, J., H enley, C. L. & S alinas, D. G., Nonlinear measures for characterizing rough surface morphologies. Phys. Rev. E, 61 (2000), 104–125.
  • K osterlitz, J. M., The d-dimensional Coulomb gas and the roughening transition. J. Phys. C, 10:19 (1977), 3753–3760.
  • K osterlitz, J. M. & T houless, D. J., Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 6:7 (1973), 1181–1203.
  • L awler, G. F., Intersections of Random Walks. Probability and its Applications. Birkhäuser, Boston, MA, 1991.
  • — Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. Math. Phys. Electron. J., 4 (1998), Paper 5, 67 pp.
  • — An introduction to the stochastic Loewner evolution, in Random Walks and Geometry, pp. 261–293. de Gruyter, Berlin, 2004.
  • Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, 114. Amer. Math. Soc., Providence, RI, 2005.
  • L awler, G. F., S chramm, O. & W erner, W., Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math., 187 (2001), 237–273.
  • — Values of Brownian intersection exponents. III. Two-sided exponents. Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 109–123.
  • — Conformal restriction: the chordal case. J. Amer. Math. Soc., 16 (2003), 917–955.
  • — Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32:1B (2004), 939–995.
  • M andelbrot, B., How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156 (1967), 636–638.
  • N addaf, A. & S pencer, T., On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys., 183 (1997), 55–84.
  • N ienhuis, B., Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett., 49:15 (1982), 1062–1065.
  • — Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys., 34:5–6 (1984), 731–761.
  • den N ijs, M., Extended scaling relations for the magnetic critical exponents of the Potts model. Phys. Rev. B, 27:3 (1983), 1674–1679.
  • P ommerenke, C., Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer, Berlin–Heidelberg, 1992.
  • R evuz, D. & Y or, M., Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften, 293. Springer, Berlin–Heidelberg, 1999.
  • R ohde, S. & S chramm, O., Basic properties of SLE. Ann. of Math., 161 (2005), 883–924.
  • S aleur, H. & D uplantier, B., Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett., 58:22 (1987), 2325–2328.
  • S chramm, O., Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118 (2000), 221–288.
  • S chramm, O. & S heffield, S., Harmonic explorer and its convergence to SLE4. Ann. Probab., 33:6 (2005), 2127–2148.
  • S heffield, S., Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139 (2007), 521–541.
  • S mirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.
  • S pencer, T., Scaling, the free field and statistical mechanics, in The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), Proc. Sympos. Pure Math., 60, pp. 373–389. Amer. Math. Soc., Providence, RI, 1997.
  • W erner, W., Random planar curves and Schramm–Loewner evolutions, in Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, pp. 107–195. Springer, Berlin–Heidelberg, 2004.