Acta Mathematica

Tartar’s conjecture and localization of the quasiconvex hull in $ \mathbb{R}^{{2 \times 2}} $

Daniel Faraco and László Székelyhidi

Full-text: Open access

Abstract

We give a concrete and surprisingly simple characterization of compact sets $ K \subset \mathbb{R}^{{2 \times 2}} $ for which families of approximate solutions to the inclusion problem DuK are compact. In particular our condition is algebraic and can be tested algorithmically. We also prove that the quasiconvex hull of compact sets of 2 × 2 matrices can be localized. This is false for compact sets in higher dimensions in general.

Article information

Source
Acta Math. Volume 200, Number 2 (2008), 279-305.

Dates
Received: 20 September 2006
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891981

Digital Object Identifier
doi:10.1007/s11511-008-0028-1

Zentralblatt MATH identifier
05322637

Rights
2008 © Institut Mittag-Leffler

Citation

Faraco, Daniel; Székelyhidi, László. Tartar’s conjecture and localization of the quasiconvex hull in $ \mathbb{R}^{{2 \times 2}} $. Acta Math. 200 (2008), no. 2, 279--305. doi:10.1007/s11511-008-0028-1. https://projecteuclid.org/euclid.acta/1485891981


Export citation

References

  • A hlfors, L. V., Lectures on Quasiconformal Mappings. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole, Monterey, CA, 1987.
  • A stala, K., Analytic aspects of quasiconformality, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), pp. 617–626.
  • A stala, K. & F araco, D., Quasiregular mappings and Young measures. Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1045–1056.
  • A stala, K., I waniec, T. & M artin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Book in preparation.
  • A stala, K., I waniec, T. & S aksman, E., Beltrami operators in the plane. Duke Math. J., 107 (2001), 27–56.
  • A umann, R. J. & H art, S., Bi-convexity and bi-martingales. Israel J. Math., 54 (1986), 159–180.
  • B aernstein, A. II & M ontgomery-S mith, S. J., Some conjectures about integral means of ∂f and $ \ifmmode\expandafter\bar\else\expandafter\=\fi{\partial }f $, in Complex Analysis and Differential Equations (Uppsala, 1997), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 64, pp. 92–109. Uppsala Univ., Uppsala, 1999.
  • B all, J. M., Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal., 63 (1976/77), 337–403.
  • B all, J. M. & J ames, R. D., Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal., 100 (1987), 13–52.
  • — Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 338 (1992), 389–450.
  • — Incompatible sets of gradients and metastability. In preparation.
  • B hattacharya, K., F iroozye, N. B., J ames, R. D. & K ohn, R. V., Restrictions on microstructure. Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 843–878.
  • B ojarski, B., Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients. Mat. Sb., 43(85) (1957), 451–503 (Russian).
  • B ojarski, B., D’O nofrio, L., I waniec, T. & S bordone, C., G-closed classes of elliptic operators in the complex plane. Ricerche Mat., 54 (2005), 403–432 (2006).
  • B ojarski, B. & I waniec, T., Quasiconformal mappings and non-linear elliptic equations in two variables. I; II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 473–478; 479–484.
  • C asadio T arabusi, E., An algebraic characterization of quasi-convex functions. Ricerche Mat., 42 (1993), 11–24.
  • C hipot, M. & K inderlehrer, D., Equilibrium configurations of crystals. Arch. Ration. Mech. Anal., 103 (1988), 237–277.
  • D acorogna, B., Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, 78. Springer, Berlin–Heidelberg, 1989.
  • D iP erna, R. J., Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc., 292 (1985), 383–420.
  • E keland, I. & T emam, R., Convex Analysis and Variational Problems. Studies in Mathematics and its Applications, 1. North-Holland, Amsterdam, 1976.
  • F araco, D., Tartar conjecture and Beltrami operators. Michigan Math. J., 52 (2004), 83–104.
  • G romov, M., Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete, 9. Springer, Berlin–Heidelberg, 1986.
  • I waniec, T., Quasiconformal mapping problem for general nonlinear systems of partial differential equations, in Symposia Mathematica, Vol. XVIII (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INdAM, Rome, 1974), pp. 501–517. Academic Press, London, 1976.
  • — Nonlinear Cauchy–Riemann operators in $ \mathbb{R}^{n} $. Trans. Amer. Math. Soc., 354:5 (2002), 1961–1995.
  • I waniec, T. & M artin, G., Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs. Oxford University Press, New York, 2001.
  • K inderlehrer, D. & P edregal, P., Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal., 115 (1991), 329–365.
  • K irchheim, B., Rigidity and Geometry of Microstructures. Habilitation Thesis, University of Leipzig, 2003.
  • K irchheim, B., M üller, S. & Š verák, V., Studying nonlinear PDE by geometry in matrix space, in Geometric Analysis and Nonlinear Partial Differential Equations, pp. 347–395. Springer, Berlin–Heidelberg, 2003.
  • K ristensen, J., On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 1–13.
  • K uiper, N. H., On C1-isometric imbeddings. Nederl. Akad. Wetensch. Proc. Ser. A., 58 (1955), 545–556.
  • L ehto, O. & V irtanen, K. I., Quasiconformal Mappings in the Plane. Die Grundlehren der mathematischen Wissenschaften, 126. Springer, New York, 1973.
  • L eonetti, F. & N esi, V., Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton. J. Math. Pures Appl., 76 (1997), 109–124.
  • M atoušek, J., On directional convexity. Discrete Comput. Geom., 25 (2001), 389–403.
  • M atoušek, J. & Plecháè, P., On functional separately convex hulls. Discrete Comput. Geom., 19 (1998), 105–130.
  • M ilton, G. W. & N esi, V., Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids, 39 (1991), 525–542.
  • M orrey, C. B., J r., Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2 (1952), 25–53.
  • M üller, S., Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Notices, 1999:20 (1999), 1087–1095.
  • — Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math., 1713, pp. 85–210. Springer, Berlin–Heidelberg, 1999.
  • M üller, S. & Š verák, V., Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math., 157 (2003), 715–742.
  • M urat, F., Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 489–507.
  • — Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (1981), 69–102.
  • N ash, J., C1 isometric imbeddings. Ann. of Math., 60 (1954), 383–396.
  • P edregal, P., Laminates and microstructure. European J. Appl. Math., 4 (1993), 121–149.
  • Parametrized Measures and Variational Principles. Progress in Nonlinear Differential Equations and their Applications, 30. Birkhäuser, Basel, 1997.
  • R udin, W., Real and Complex Analysis. McGraw-Hill, New York, 1987.
  • S cheffer, V., Regularity and Irregularity of Solutions to Nonlinear Second Order Elliptic Systems and Inequalities. Ph.D. Thesis, Princeton University, 1974.
  • Š verák, V., Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 185–189.
  • — On Tartar’s conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 405–412.
  • — On the problem of two wells, in Microstructure and Phase Transition, IMA Vol. Math. Appl., 54, pp. 183–189. Springer, New York, 1993.
  • — Lower-semicontinuity of variational integrals and compensated compactness, in Proceedings of the International Congress of Mathematicians, Vol. 2 (Zürich, 1994), pp. 1153–1158. Birkhäuser, Basel, 1995.
  • S zékelyhidi, L., J r., The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal., 172 (2004), 133–152.
  • — Rank-one convex hulls in $ \mathbb{R}^{{2 \times 2}} $. Calc. Var. Partial Differential Equations, 22 (2005), 253–281.
  • — On quasiconvex hulls in symmetric 2 × 2 matrices. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 865–876.
  • — Erratum to: “Rank-one convex hulls in $ \mathbb{R}^{{2 \times 2}} $” [Calc. Var. Partial Differential Equations, 22 (2005), 253–281]. Calc. Var. Partial Differential Equations, 28 (2007), 545–546.
  • T artar, L., Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Vol. IV, Res. Notes in Math., 39, pp. 136–212. Pitman, Boston, MA, 1979.
  • — The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 111, pp. 263–285. Reidel, Dordrecht, 1983.
  • — Some remarks on separately convex functions, in Microstructure and Phase Transition, IMA Vol. Math. Appl., 54, pp. 191–204. Springer, New York, 1993.
  • Z hang, K., A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 313–326.
  • — On connected subsets of M2 × 2 without rank-one connections. Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 207–216.
  • — Quasiconvex functions, SO(n) and two elastic wells. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 759–785.