Acta Mathematica
- Acta Math.
- Volume 195, Number 1 (2005), 1-20.
On the complexity of algebraic numbers, II. Continued fractions
Boris Adamczewski and Yann Bugeaud
Full-text: Open access
Note
The second author was supported by the Austrian Science Fund (FWF), Grant M822-N12.
Article information
Source
Acta Math., Volume 195, Number 1 (2005), 1-20.
Dates
Received: 16 May 2005
First available in Project Euclid: 31 January 2017
Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891760
Digital Object Identifier
doi:10.1007/BF02588048
Mathematical Reviews number (MathSciNet)
MR2233683
Zentralblatt MATH identifier
1195.11093
Rights
2005 © Institut Mittag-Leffler
Citation
Adamczewski, Boris; Bugeaud, Yann. On the complexity of algebraic numbers, II. Continued fractions. Acta Math. 195 (2005), no. 1, 1--20. doi:10.1007/BF02588048. https://projecteuclid.org/euclid.acta/1485891760
References
- Adamczewski, B. & Bugeaud, Y., On the complexity of algebraic numbers I. Expansions in integer bases. To appear in Ann. of Math.
- Adamczewski, B., Bugeaud, Y. & Davison, J. L., Continued fractions and transcendental numbers. Preprint, 2005.
- Adamczewski, B., Bugeaud, Y. & Luca, F., Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, 339 (2000), 19–34.
- Allouche, J.-P., Nouveaux résultats de transcendance de réels à développement non aléatoire. Gaz. Math., 84 (2000), 19–34.Mathematical Reviews (MathSciNet): MR1766087
- Allouche, J.-P., Davison, J. L., Queffélec, M. & Zamboni, L. Q., Transcendence of Sturmian or morphic continued fractions. J. Number Theory, 91 (2001), 39–66.Zentralblatt MATH: 0998.11036
Digital Object Identifier: doi:10.1006/jnth.2001.2669
Mathematical Reviews (MathSciNet): MR1869317 - Allouche, J.-P. & Shallit, J., Automatic Sequences: Theory, Applications, Generalizations. Cambridge Univ. Press, Cambridge, 2003.Zentralblatt MATH: 1086.11015
- Bailey, D. H., Borwein, J. M., Crandall, R. E. & Pomerance, C., On the binary expansions of algebraic numbers. J. Théor. Nombres Bordeaux, 16 (2004), 487–518.
- Baxa, C., Extremal values of continuants and transcendence of certain continued fractions. Adv. in Appl. Math., 32 (2004), 754–790.Zentralblatt MATH: 1063.11019
Digital Object Identifier: doi:10.1016/S0196-8858(03)00103-9
Mathematical Reviews (MathSciNet): MR2053844 - Borel, É., Sur les chiffres décimaux de $\sqrt 2 $ et divers problèmes de probabilités en chaîne. C. R. Acad. Sci. Paris, 230 (1950), 591–593.
- Cassaigne, J., Sequences with grouped factors, in Developments in Language Theory, III (Thessaloniki, 1997), pp. 211–222. World Sci. Publishing, River Edge, NJ, 1998.
- Cobham, A., Uniform tag sequences. Math. Systems Theory, 6 (1972), 164–192.Zentralblatt MATH: 0253.02029
Digital Object Identifier: doi:10.1007/BF01706087
Mathematical Reviews (MathSciNet): MR457011 - Davison, J. L., A class of transcendental numbers with bounded partial quotients, in Number Theory and Applications (Banff, AB, 1988), pp. 365–371, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 265. Kluwer, Dordrecht, 1989.
- — Continued fractions with bounded partial quotients. Proc. Edinburgh Math. Soc., 45 (2002), 653–671.Zentralblatt MATH: 1107.11303
Digital Object Identifier: doi:10.1017/S001309150000119X
Mathematical Reviews (MathSciNet): MR1933746 - Durand, F., Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergodic Theory Dynam. Systems, 20 (2000), 1061–1078; Corrigendum and addendum. Ibid. Durand, F., Linearly recurrent subshifts have a finite number of non-periodic subshift factors Ergodic Theory Dynam. Systems, 23 (2003), 663–669.Zentralblatt MATH: 0965.37013
Digital Object Identifier: doi:10.1017/S0143385700000584
Mathematical Reviews (MathSciNet): MR1779393 - Hartmanis, J. & Stearns, R. E., On the computational complexity of algorithms. Trans. Amer. Math. Soc., 117 (1965), 285–306.Zentralblatt MATH: 0131.15404
Digital Object Identifier: doi:10.2307/1994208
Mathematical Reviews (MathSciNet): MR170805 - Khinchin, A. Ya., Continued Fractions, 2nd edition. Gosudarstv. Izdat. Techn.-Teor. Lit., Moscow-Leningrad, 1949 (Russian); English translation: The University of Chicago Press, Chicago-London, 1964.
- Lang, S., Introduction to Diophantine Approximations, 2nd edition. Springer, New York, 1995.Zentralblatt MATH: 0826.11030
- Mendès France, M., Principe de la symétrie perturbée in Séminaire de Théorie des Nombres (Paris, 1979–80), pp. 77–98. Progr. Math., 12. Birkhäuser, Boston, MA, 1981.
- Morse, M. & Hedlung, G. A., Symbolic dynamics. Amer. J. Math., 60 (1938), 815–866.Zentralblatt MATH: 0019.33502
Digital Object Identifier: doi:10.2307/2371264
Mathematical Reviews (MathSciNet): MR1507944 - Perron, O., Die Lehre von den Kettenbrüchen. Teubner, Leipzig, 1929.Zentralblatt MATH: 55.0262.09
- Queffélec, M., Transcendance des fractions continues de Thue-Morse. J. Number Theory, 73 (1998), 201–211.Zentralblatt MATH: 0920.11045
Digital Object Identifier: doi:10.1006/jnth.1998.2305
Mathematical Reviews (MathSciNet): MR1658023 - — Irrational numbers with automaton-generated continued fraction expansion, in Dynamical Systems (Luminy-Marseille, 1998), pp. 190–198. World Sci. Publishing, River Edge, NJ, 2000.
- Roth, K. F., Rational approximations to algebraic numbers. Mathematika, 2 (1955), 1–20; Corrigendum. Ibid. Roth, K. F., Rational approximations to algebraic numbers. Mathematika, 2 (1955), 168.
- Schmidt, W. M., On simultaneous approximations of two algebraic numbers by rationals. Acta Math., 119 (1967), 27–50.Zentralblatt MATH: 0173.04801
Digital Object Identifier: doi:10.1007/BF02392078
Mathematical Reviews (MathSciNet): MR223309 - —, Norm form equations. Ann. of Math., 96 (1972), 526–551.
- —, Diophantine Approximation. Lecture Notes in Math., 785. Springer, Berlin, 1980.Zentralblatt MATH: 0421.10019
- Shallit, J., Real numbers with bounded partial quotients: a survey. Enseign. Math., 38 (1992), 151–187.
- Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., 42 (1937), 230–265.Digital Object Identifier: doi:10.1112/plms/s2-42.1.230
- Waldschmidt, M., Un demi-siècle de transcendance, in Development of Mathematics 1950–2000, pp. 1121–1186. Birkhäuser, Basel, 2000.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Division algebras and supersymmetry II
Baez, John C. and Huerta, John, Advances in Theoretical and Mathematical Physics, 2011 - Reflexivity and rigidity for complexes, II Schemes
Avramov, Luchezar, Iyengar, Srikanth, and Lipman, Joseph, Algebra & Number Theory, 2011 - Chapter II. Metric Spaces
Anthony W. Knapp, Basic Real Analysis, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016
- Division algebras and supersymmetry II
Baez, John C. and Huerta, John, Advances in Theoretical and Mathematical Physics, 2011 - Reflexivity and rigidity for complexes, II Schemes
Avramov, Luchezar, Iyengar, Srikanth, and Lipman, Joseph, Algebra & Number Theory, 2011 - Chapter II. Metric Spaces
Anthony W. Knapp, Basic Real Analysis, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016 - Some sums involving Farey fractions II
KANEMITSU, Shigeru, KUZUMAKI, Takako, and YOSHIMOTO, Masami, Journal of the Mathematical Society of Japan, 2000 - On the Ramanujan AGM Fraction, II: The Complex-Parameter Case
Borwein, J. and Crandall, R., Experimental Mathematics, 2004 - On the Hall algebra of an elliptic curve, II
Schiffmann, Olivier, Duke Mathematical Journal, 2012 - Oriented cohomology theories of algebraic varieties II
Panin, Ivan, Homology, Homotopy and Applications, 2009 - Algebraic Structures of Some Sets of Pythagorean Triples II
Wójtowicz, Marek, Missouri Journal of Mathematical Sciences, 2001 - Algebraic deformations of toric varieties II: noncommutative instantons
Cirio, Lucio, Landi, Giovanni, and Szabo, Richard J., Advances in Theoretical and Mathematical Physics, 2011 - Algebraic cycles and the classical groups II: Quaternionic cycles
Lawson, H Blaine, Lima-Filho, Paulo, and Michelsohn, Marie-Louise, Geometry & Topology, 2005