Acta Mathematica

Finite loop spaces are manifolds

Tilman Bauer, Nitu Kitchloo, Dietrich Notbohm, and Erik Kjær Pedersen

Full-text: Open access

Note

The fourth author wishes to thank the Sonderforschungsbereich 478: Geometrische Strukturen in der Mathematik, Münster, for its hospitality and support.

Article information

Source
Acta Math., Volume 192, Number 1 (2004), 5-31.

Dates
Received: 6 May 2003
Revised: 24 February 2004
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891627

Digital Object Identifier
doi:10.1007/BF02441084

Mathematical Reviews number (MathSciNet)
MR2079597

Zentralblatt MATH identifier
1055.55009

Rights
2004 © Institut Mittag-Leffler

Citation

Bauer, Tilman; Kitchloo, Nitu; Notbohm, Dietrich; Pedersen, Erik Kjær. Finite loop spaces are manifolds. Acta Math. 192 (2004), no. 1, 5--31. doi:10.1007/BF02441084. https://projecteuclid.org/euclid.acta/1485891627


Export citation

References

  • Adams, J. F. & Mahmud, Z., Maps between classifying spaces. Invent. Math., 35 (1976), 1–41.
  • Andersen, K. S., Cohomology of Weyl Groups with Applications to Topology. Master's Thesis, 1997.
  • Bauer, T., p-compact groups as framed manifolds. Topology, 43 (2004), 569–597.
  • Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. of Math., 57 (1953), 115–207.
  • Browder, W., The cohomology of covering spaces of H-spaces. Bull. Amer. Math. Soc., 65 (1959), 140–141.
  • —, Torsion in H-spaces. Ann. of Math., 74 (1961), 24–51.
  • —, Higher torsion in H-spaces. Trans. Amer. Math. Soc., 108 (1963), 353–375.
  • —, Surgery on Simply-Connected Manifolds. Ergeb. Math. Grenzgeb., 65. Springer-Verlag, New York-Heidelberg, 1972.
  • Browder, W. & Spanier, E., H-spaces and duality. Pacific J. Math., 12 (1962), 411–414.
  • Clark, A., On π3 of finite dimensional H-spaces. Ann. of Math., 78 (196), 193–196.
  • Clark, A. & Ewing, J., The realization of polynomial algebras as cohomology rings. Pacific J. Math., 50 (1974), 425–434.
  • Dupont, J. L., On homotopy invariance of the tangent bundle, I; II. Math. Scand., 26 (1970), 5–13; 200–220.
  • Dwyer, W. G. & Wilkerson, C. W., p-compact groups with abelian Weyl groups. ftp://hopf.math.purdue.edu/pub/Wilkerson/abelian.dvi.
  • —, Homotopy fixed-point methods for Lie groups and finite loop spaces. Ann. of Math., 139 (1994), 395–442.
  • —, The center of a p-compact group, in The Čech Centennial (Boston, MA, 1993), pp. 119–157. Contemp. Math., 181. Amer. Math. Soc., Providence, RI, 1995.
  • —, Product splittings for p-compact groups. Fund. Math., 147 (1995), 279–300.
  • Gottlieb, D. H., Poincaré duality and fibrations. Proc. Amer. Math. Soc., 76 (1979), 148–150.
  • Hilton, P. & Roitberg, J., On principal S3-bundles over spheres. Ann. of Math., 90 (1969), 81–107.
  • Hopf, H., Über die algebraische Anzahl von Fixpunkten. Math. Z., 29 (1929), 493–524.
  • Hubbuck, J. R., Simply connected H-spaces of rank 2 with 2-torsion. Q. J. Math., 26 (1975), 169–177.
  • Klein, J. R., The dualizing spectrum of a topological group. Math. Ann., 319 (2001), 421–456.
  • Mislin, G., Finitely dominated nilpotent spaces. Ann. of Math., 103 (1976), 547–556.
  • Møller, J. M., Homotopy Lie groups. Bull. Amer. Math. Soc., 32 (1995), 413–428.
  • Møller, J. M. & Notbohm, D., Centers and finite coverings of finite loop spaces. J. Reine Angew. Math., 456 (1994), 99–133.
  • —, Connected finite loop spaces with maximal tori. Trans. Amer. Math. Soc., 350 (1998), 3483–3504.
  • Notbohm, D., Classifying spaces of compact Lie groups and finite loop spaces, in Handbook of Algebraic Topology, pp. 1049–1094. North-Holland, Amsterdam, 1995.
  • —, The finiteness obstruction for loop spaces. Comment. Math. Helv., 74 (1999), 657–670.
  • —, A uniqueness result for orthogonal groups as 2-compact groups. Arch. Math. (Basel), 78 (2002), 110–119.
  • Pedersen, E. K., Smoothing H-spaces. Math. Scand., 43 (1978), 185–196.
  • —, Smoothing H-spaces, II. Math. Scand., 46 (1980), 216–222.
  • Pedersen, E. K. & Ranicki, A., Projective surgery theory. Topology, 19 (1980), 239–254.
  • Pedersen E. K. & Taylor, L. R., The Wall finiteness obstruction for a fibration. Amer. J. Math., 100 (1978), 887–896.
  • Schwartz, L., Unstable modules over the Steenrod algebra, functors, and the cohomology of spaces, in Infinite Length Modules (Bielefeld, 1998), pp. 229–249. Birkhäuser, Basel, 2000.
  • Sutherland, W. A., The Browder-Dupont invariant. Proc. London Math. Soc., 33 (1976), 94–112.
  • Vavpetič, A. & Viruel, A., Symplectic groups are n-determined groups. In preparation.
  • Viruel, A., Homotopy uniqueness of BG2. Manuscripta Math., 95 (1998), 471–497.
  • Wall, C. T. C., Finiteness conditions for CW-complexes. Ann. of Math., 81 (1965), 56–69.
  • —, Poincaré complexes, I. Ann. of Math., 86 (1967), 213–245.
  • Wilkerson, C. W., Applications of minimal simplicial groups. Topology, 15 (1976), 111–130.