Acta Mathematica

Values of Brownian intersection exponents, II: Plane exponents

Gregory F. Lawler, Oded Schramm, and Wendelin Werner

Full-text: Open access

Note

The first author was supported by the National Science Foundation.

Article information

Source
Acta Math., Volume 187, Number 2 (2001), 275-308.

Dates
Received: 18 May 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891454

Digital Object Identifier
doi:10.1007/BF02392619

Mathematical Reviews number (MathSciNet)
MR1879851

Zentralblatt MATH identifier
0993.60083

Rights
2001 © Institut Mittag-Leffler

Citation

Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Values of Brownian intersection exponents, II: Plane exponents. Acta Math. 187 (2001), no. 2, 275--308. doi:10.1007/BF02392619. https://projecteuclid.org/euclid.acta/1485891454


Export citation

References

  • Ahlfors, L. V., Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973.
  • Aizenman, M., Duplantier, B. & Aharony, A., Path crossing exponents and the external perimeter in 2D percolation. Phys. Rev. Lett., 83 (1999), 1359–1362.
  • Azencott, R., Behaviour of diffusion semi-groups at infinity. Bull. Soc. Math. France, 102 (1974), 193–240.
  • Bishop, C. J., Jones, P. W., Pemantle, R. & Peres, Y., The dimension of the Brownian frontier is greater than 1. J. Funct. Anal., 143 (1997), 309–336.
  • Burdzy, K. & Lawler, G. F., Non-intersection exponents for Brownian paths. Part I: Existence and an invariance principle. Probab. Theory Related Fields, 84 (1990), 393–410.
  • —, Non-intersection exponents for Brownian paths. Part II: Estimates and applications to a random fractal. Ann. Probab., 18 (1990), 981–1009.
  • Cardy, J. L., Conformal invariance and surface critical behavior. Nuclear Phys. B, 240 (1984), 514–532.
  • —, Critical percolation in finite geometries. J. Phys. A, 25 (1992), L201-L206.
  • —, The number of incipient spanning clusters in two-dimensional percolation. J. Phys. A, 31 (1998), L105.
  • Cranston, M. & Mountford, T., An extension of a result of Burdzy and Lawler. Probab. Theory Related Fields, 89 (1991), 487–502.
  • Duplantier, B., Random walks and quantum gravity in two dimensions. Phys. Rev. Lett., 81 (1998), 5489–5492.
  • —, Two-dimensional copolymers and exact conformal multifractality. Phys. Rev. Lett., 82 (1999), 880–883.
  • —, Harmonic measure exponents for two-dimensional percolation. Phys. Rev. Lett., 82 (1999), 3940–3943.
  • Duplantier, B. & Kwon, K.-H., Conformal invariance and intersection of random walks. Phys. Rev. Lett., 61 (1988), 2514–2517.
  • Duplantier, B. & Saleur, H., Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett., 58 (1987), 2325–2328.
  • Kenyon, R., Conformal invariance of domino tiling. Ann. Probab., 28 (2000), 759–795.
  • —, Long-range properties of spanning trees. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys., 41 (2000), 1338–1363.
  • —, The asymptotic determinant of the discrete Laplacian. Acta Math., 185 (2000), 239–286.
  • Lawler, G. F., Intersections of Random Walks. Birkhäuser Boston, Boston, MA, 1991.
  • —, Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab., 1:2 (1996), 1–20 (electronic).
  • —, Cut times for simple random walk. Electron. J. Probab., 1:13 (1996), 1–24 (electronic).
  • —, The dimension of the frontier of planar Brownian motion. Electron. Comm. Probab., 1:5 (1996), 29–47 (electronic).
  • Lawler, G. F., The frontier of a Brownian path is multifractal. Preprint, 1997.
  • —, Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. Math. Phys. Electron. J., 4:5 (1998), 1–67 (electronic).
  • —, Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions, in Random Walks (Budapest, 1998), pp. 219–258. Bolyai Soc. Math. Stud., 9. Janos Bolyai Math. Soc., Budapest, 1999.
  • Lawler, G. F. & Puckette, E. E., The intersection exponent for simple random walk. Combin. Probab. Comput., 9 (2000), 441–464.
  • Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents, I: Half-plane exponents. Acta Math., 187 (2001), 237–273.
  • Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents, III: Two-sided exponents. To appear in Ann. Inst. H. Poincaré Probab. Statist. http://arxiv.org/abs/math.PR/0005294.
  • Lawler, G. F., Schramm, O. & Werner, W., Analyticity of intersection exponents for planar Brownian motion. To appear in Acta Math., 188 (2002). http://arxiv.org/abs/math.PR/0005295.
  • Lawler, G. F., Schramm, O. & Werner, W., Sharp estimates for Brownian non-intersection probabilities. To appear in In and Out of Equilibrium. Probability with a Physics Flavor. Progr. Probab. Birkhäuser Boston, Boston, MA.
  • Lawler, G. F. & Werner, W., Intersection exponents for planar Brownian motion. Ann. Probab., 27 (1999), 1601–1642.
  • —, Universality for conformally invariant intersection exponents. J. Eur. Math. Soc. (JEMS), 2 (2000), 291–328.
  • Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann., 89 (1923), 103–121.
  • Madras, N. & Slade, G., The Self-Avoiding Walk. Birkhäuser Boston, Boston, MA, 1993.
  • Mandelbrot, B. B., The Fractal Geometry of Nature. Freeman, San Francisco, CA, 1982.
  • Nienhuis, B., Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Statist. Phys., 34 (1984), 731–761.
  • Pommerenke, Ch., On the Loewner differential equation. Michigan Math. J., 13 (1966), 435–443.
  • Revuz, D. & Yor, M., Continuous Martingales and Brownian Motion. Grundlehren Math. Wiss., 293. Springer-Verlag, Berlin, 1991.
  • Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118 (2000), 221–288.
  • Werner, W., Bounds for disconnection exponents. Electron. Comm. Probab., 1:4 (1996), 19–28 (electronic).