Acta Mathematica

Extrapolation of Carleson measures and the analyticity of Kato's square-root operators

Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe Tchamitchian

Full-text: Open access


Hofmann and Lewis were each partially supported by NSF research grants. Lewis also was partially supported by the Mittag-Leffer Institute, who provided both financial support and a pleasant working atmosphere during the spring of 2000.

Article information

Acta Math., Volume 187, Number 2 (2001), 161-190.

Received: 22 May 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2001 © Institut Mittag-Leffler


Auscher, Pascal; Hofmann, Steve; Lewis, John L.; Tchamitchian, Philippe. Extrapolation of Carleson measures and the analyticity of Kato's square-root operators. Acta Math. 187 (2001), no. 2, 161--190. doi:10.1007/BF02392615.

Export citation


  • Auscher, P., Regularity theorems and heat kernels for elliptic operators. J. London Math. Soc. (2), 54 (1996), 284–296.
  • Auscher, P. & Tchamitchian, P., Square Root Problem for Divergence Operators and Related Topics. Astérisque, 249. Soc. Math. France, Paris, 1998.
  • Christ, M., Lectures on Singular Integral Operators. CBMS Regional Conf. Ser. in Math., 77. Conf. Board Math. Sci., Washington, DC, 1990.
  • Coifman, R. R., Deng, D. G. & Meyer, Y., Domains de la racine carrée de certains opérateurs différentiels accrétifs. Ann. Inst. Fourier (Grenoble), 33 (1983), 123–134.
  • Coifman, R. R., McIntosh, A. & Meyer, Y., L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes. Ann. of Math. (2), 116 (1982), 361–387.
  • Coifman, R. R. & Meyer, Y., Nonlinear harmonic analysis, operator theory and P.D.E., in Beijing Lectures in Harmonic Analysis (Beijing, 1984), pp. 3–45. Ann. of Math. Stud., 112. Princeton Univ. Press, Princeton, NJ, 1986.
  • Dahlberg, B. E. J. & Kenig, C. E., Harmonic Analysis and Partial Differential Equations. Department of Mathematics, Chalmers University of Technology and the University of Göteborg, Göteborg, 1985.
  • Dorronsoro, J. R., A characterization of potential spaces. Proc. Amer. Math. Soc., 95 (1985), 21–31.
  • Fabes, E. B., Jerison, D. S. & Kenig, C. E., Multilinear square functions and partial differential equations. Amer. J. Math., 107 (1985), 1325–1368.
  • — Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure. Ann. of Math. (2), 119 (1984), 121–141.
  • Hofmann, S. & Lewis, J. L., The Dirichlet Problem for Parabolic Operators with Singular Drift Terms. Mem. Amer. Math. Soc., 151 (719). Amer. Math. Soc., Providence, RI, 2001.
  • Hofmann, S. & McIntosh, A., The solution of the Kato problem in two dimensions. Unpublished manuscript.
  • Journé, J.-L., Remarks on Kato's square-root problem, in Mathematical Analysis (El Escorial, 1989). Publ. Math., 35 (1991), 299–321.
  • Kato, T., Fractional powers of dissipative operators. J. Math. Soc. Japan, 13 (1961), 246–274.
  • — Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan, 5 (1953), 208–234.
  • Kenic, C. & Meyer, Y., Kato's square roots of accretive operators and Cauchy kernels on Lipschitz curves are the same, in Recent Progress in Fourier Analysis (El Escorial, 1983), pp. 123–143. North-Holland Math. Stud., 111. North-Holland Amsterdam, 1985.
  • Lacey, M., Personal communication.
  • Lewis, J. L. & Murray, M.The Method of Layer Potentials for the Heat Equation in Time-Varying Domains. Mem. Amer. Math. Soc., 114 (545). Amer. Math. Soc., Providence, RI, 1995.
  • McIntosh, A., Square roots of operators and applications to hyperbolic PDEs, in Mini-conference on Operator Theory and Partial Differential Equations (Camberra, 1983), pp. 124–136. Proc. Centre Math. Anal. Austral. Nat. Univ., 5. Austral. Nat. Univ., Canberra, 1984.
  • — On the comparability of A1/2 and A*1/2. Proc. Amer. Math. Soc., 32 (1972), 430–434.
  • — On representing closed accretive sesquilinear forms as (A1/2u, A*1/2v) in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. III (Paris, 1980/1981), pp. 252–267. Res. Notes in Math., 70, Pitman, Boston, MA-London, 1982.
  • — The square root problem for elliptic operators: a survey, in Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), pp. 122–140. Lecture Notes in Math., 1450. Springer-Verlag, Berlin, 1990.