Acta Mathematica

Spectral theory of Laplacians for Hecke groups with primitive character

Erik Balslev and Alexei Venkov

Full-text: Open access

Note

Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish National Research Foundation. On leave from the Steklov Institute, St. Petersburg.

Note

An erratum to this article can be found online at http://dx.doi.org/10.1007/BF02441083.

Article information

Source
Acta Math., Volume 186, Number 2 (2001), 155-217.

Dates
Received: 11 November 1999
Revised: 12 October 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891400

Digital Object Identifier
doi:10.1007/BF02401839

Mathematical Reviews number (MathSciNet)
MR1846029

Zentralblatt MATH identifier
1022.11024

Rights
2001 © Institut Mittag-Leffler

Citation

Balslev, Erik; Venkov, Alexei. Spectral theory of Laplacians for Hecke groups with primitive character. Acta Math. 186 (2001), no. 2, 155--217. doi:10.1007/BF02401839. https://projecteuclid.org/euclid.acta/1485891400


Export citation

References

  • Atkin, A. & Lehner, J., Hecke operators on Γ0(m). Math. Ann., 185 (1970), 134–160.
  • Balslev, E. & Venkov, A., The Weyl law for subgroups of the modular group. Geom. Funct. Anal., 8 (1998), 437–465.
  • Balslev, E. & Venkov, A. Phillips-Sarnak's conjecture for Γ0(8) with primitive character. Preprint, Aarhus University, 1999.
  • Davenport, H., Multiplicative Number Theory. Markham, Chicago, IL, 1967.
  • Deshouillers, J.-M., Iwaniec, H., Phillips, R. S. & Sarnak, P., Maass cusp forms. Proc. Nat. Acad. Sci. U.S.A., 82 (1985), 3533–3534.
  • Faddeev, L. D., Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobačevskiî plane. Trans. Moscow Math. Soc., 1967, 357–386.
  • Fournais, S., The scattering matrix for Γ0(N) with a primitive, real character. Preprint, Aarhus University, 1999.
  • Hejhal, D., The Selberg Trace Formula for PSL(2, R), Vol. 2. Lecture Notes in Math., 1001. Springer-Verlag, Berlin, 1983.
  • Howland, J. S., Puiseux series for resonances at an embedded eigenvalue. Pacific J. Math., 55 (1974), 157–176.
  • Huxley, M., Scattering matrices for congruence subgroups, in Modular Forms (Durham, 1983), pp. 141–156. Horwood, Chichester, 1984.
  • Iwaniec, H., Small eigenvalues of Laplacian for Γ0(N). Acta Arith., 56 (1990), 65–82.
  • Jacquet, H. & Shalika, J. A., A non-vanishing theorem for zeta functions for GLn. Invent. Math., 38 (1976), 1–16.
  • Kato, T., Perturbation Theory for Linear Operators, 2nd edition. Grundlehren Math. Wiss., 132, Springer-Verlag, Berlin-New York, 1976.
  • Li, W.-C. W., Newforms and functional equations. Math. Ann., 212 (1975), 285–315.
  • Miyake, T., Modular Forms. Springer-Verlag, Berlin, 1989.
  • Murty, M. R. & Murty, V. K., Non-vanishing of L-functions and applications. Progr. Math., 157. Birkhäuser, Basel, 1997.
  • Ogg, A. P., On the eigenvalues of Hecke operators. Math. Ann., 179 (1969), 101–108.
  • Petridis, Y., On the singular set, the resolvent and Fermi's golden rule for finite volume hyperbolic surfaces. Manuscripta Math., 82 (1994), 331–347.
  • Phillips, R. & Sarnak, P., On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math., 80 (1985), 339–364.
  • — Cusp forms for character varieties. Geom. Funct. Anal., 4 (1994), 93–118.
  • — Perturbation theory for the Laplacian on automorphic functions. J. Amer. Math. Soc., 5 (1992), 1–32.
  • Rankin, R. A., Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. Proc. Cambridge Philos. Soc., 35 (1939), 351–372.
  • Sarnak, P., On cusp forms, in The Selberg Trace Formula and Related Topics (Brunswick, ME, 1984), pp. 393–407. Contemp. Math., 53. Amer. Math. Soc., Providence, RI, 1986.
  • Scholl, A. J., Fourier coefficients of Eisenstein series on noncongruence subgroups. Math. Proc. Cambridge Philos. Soc., 99 (1986), 11–17.
  • Selberg, A., Harmonic analysis, in Collected Papers, Vol. I, pp. 626–674. Springer-Verlag, Berlin, 1989.
  • — Remarks on the distribution of poles of Eisenstein series, in Collected Papers, Vol. II, pp. 15–46. Springer-Verlag, Berlin, 1991.
  • Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan 11. Iwanami Shoten, Tokyo; Princeton Univ. Press, Princeton, NJ, 1971.
  • Venkov, A., Spectral Theory of Automorphic Functions. A translation of Trudy Mat. Inst. Steklov., 153 (1981). Proc. Steklov Inst. Math., 1982:4. Amer. Math. Soc., Providence, RI, 1983.
  • Spectral Theory of Automorphic Functions and Its Applications. Math. Appl. (Soviet Ser.), 51. Kluwer, Dordrecht, 1990.
  • — Selberg's trace formula for the Hecke operator generated by an involution and the eigenvalues for the Laplace-Beltrami operator on the fundamental domain of the modular group PSL (2, Z). Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 484–499 (Russian). English translation in Math. USSR-Izv., 42 (1978).
  • Wolpert, S., Spectral limits for hyperbolic surfaces, I; II. Invent. Math., 108 (1992), 67–89; 91–129.
  • — Disappearance of cusp forms in special families. Ann. of Math., 139 (1994), 239–291.