Acta Mathematica

Uniqueness of Kähler-Ricci solitons

Gang Tian and Xiaohua Zhu

Full-text: Open access

Article information

Source
Acta Math. Volume 184, Number 2 (2000), 271-305.

Dates
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891317

Digital Object Identifier
doi:10.1007/BF02392630

Mathematical Reviews number (MathSciNet)
MR1768112

Rights
2000 © Institut Mittag-Leffler

Citation

Tian, Gang; Zhu, Xiaohua. Uniqueness of Kähler-Ricci solitons. Acta Math. 184 (2000), no. 2, 271--305. doi:10.1007/BF02392630. https://projecteuclid.org/euclid.acta/1485891317


Export citation

References

  • Alexander, H. J. & Taylor, B. A., Comparison of two capacities in Cn. Math. Z., 186 (1984), 407–417.
  • Aubin, T., Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité. J. Funct. Anal., 57 (1984), 143–153.
  • Bedford, E., Survey of pluri-potential theory, in Several Complex Variables (Stockholm, 1987/88), pp. 48–97. Math. Notes, 38. Princeton Univ. Press, Princeton, NJ, 1993.
  • Bando, S. & Mabuchi, T., Uniqueness of Einstein-Kähler metrics modulo connected group actions, in Algebraic Geometry (Sendai, 1985), pp. 11–40. Adv. Stud. Pure Math., 10. North-Holland, Amsterdam-New York, 1987.
  • Bedford, E. & Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math., 37 (1976), 1–44.
  • —, A new capacity for plurisubharmonic functions. Acta Math., 149 (1982), 1–40.
  • Cao, H.-D., Existence of gradient Kähler-Ricci solitons, in Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–16. AK Peters, Wellesley, MA, 1996.
  • —, Limits of solutions to the Kähler-Ricci flow. J. Differential Geom., 45 (1997), 257–272.
  • Calabi, E., Extremal Kähler metrics, II, in Differential Geometry and Complex Analysis, pp. 95–114. Springer-Verlag, Berlin-New York, 1985.
  • Futaki, A., An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 73 (1983), 437–443.
  • —, Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Math., 1314. Springer-Verlag, Berlin-New York, 1988.
  • Futaki, A. & Mabuchi, T., Bilinear forms and extremal Kähler vector fields associated with Kähler classes. Math. Ann., 301 (1995), 199–210.
  • Hamilton, R. S., Eternal solutions to the Ricci flow. J. Differential Geom., 38 (1993), 1–11.
  • Koiso, N., On rationally symmetric Hamilton's equation for Kähler-Einstein metrics, in Recent Topics in Differential and Analytic Geometry, pp. 327–337. Adv. Stud. Pure Math., 18-I. Academic Press, Boston, MA, 1990.
  • Kołodziej, S., The complex Monge-Ampère equation. Acta Math., 180 (1998), 69–117.
  • Tian, G., Kähler-Einstein metrics on algebraic manifolds, in Transcendental Methods in Algebraic Geometry (Cetraro, 1994), pp. 143–185. Lecture Notes in Math., 1646. Springer-Verlag, Berlin, 1996.
  • — Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 130 (1997), 1–37.
  • Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math., 31 (1978), 339–411.
  • Zhu, X. H., Ricci soliton-typed equations on compact complex manifolds with c1(M)>0. To appear in J. Geom. Anal., 10 (2000).