Acta Mathematica

Power-law subordinacy and singular spectra I. Half-line operators

Svetlana Jitomirskaya and Yoram Last

Full-text: Open access

Article information

Acta Math., Volume 183, Number 2 (1999), 171-189.

Received: 21 October 1998
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1999 © Institut Mittag-Leffler


Jitomirskaya, Svetlana; Last, Yoram. Power-law subordinacy and singular spectra I. Half-line operators. Acta Math. 183 (1999), no. 2, 171--189. doi:10.1007/BF02392827.

Export citation


  • Aizenman, M., Localization at weak disorder: some elementary bounds. Rev. Math. Phys., 6 (1994), 1163–1182.
  • Berezanskii, J., Expansions in Eigenfunctions of Selfadjoint Operators. Transl. Math. Monographs, 17. Amer. Math. Soc., Providence, RI, 1968.
  • Boole, G., On the comparison of transcendents, with certain applications to the theory of definite integrals. Philos. Trans. Roy. Soc. London Ser, A, 147 (1857), 780.
  • Del Rio, R., Jitomirskaya, S., Last, Y. & Simon, B., Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69 (1996), 153–200.
  • Gilbert, D. J., On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints. Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 213–229.
  • Gilbert, D. J. & Pearson, D. B., On subordinacy and analysis of the spectrum of onedimensional Schrödinger operators. J. Math. Anal. Appl., 128, (1987), 30–56.
  • Gordon, A. Ya., A deterministic potential with a pure point spectrum. Math. Notes, 48 (1990), 1197–1203.
  • Jitomirskaya, S. & Last, Y., Dimensional Hausdorff properties of singular continuous spectra. Phys. Rev. Lett., 76 (1996), 1765–1769.
  • Jitomirskaya, S. & Last, Y., Power-law subordinacy and singular spectra, II. Line operators. To appear in Comm. Math. Phys.
  • Kahn, S. & Pearson, D. B., Subordinacy and spectral theory for infinite matrices. Helv. Phys. Acta, 65 (1992), 505–527.
  • Kirsch, V., Molchanov, S. A. & Pastur, L. A., The one-dimensional Schrödinger operator with unbounded potential: the pure point spectrum. Functional Anal. Appl. 24 (1990), 176–186.
  • Kiselev, A. & Last, Y., Solutions, spectrum and dynamics for Schrödinger operators on infinite domains. To appear in Duke Math. J.
  • Last, Y., Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal., 142 (1996), 406–445.
  • Last, Y. & Simon, B., Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math., 135 (1999), 329–367.
  • Rogers, C. A. & Taylor, S. J., The analysis of additive set functions in Euclidean space. Acta Math., 101 (1959), 273–302.
  • — Additive set functions in Euclidean space, II. Acta Math., 109 (1963), 207–240.
  • Simon, B., Schrödinger semigroups. Bull. Amer. Math. Soc., 7 (1982), 447–526.
  • — Spectral analysis and rank one perturbations and applications, in Mathematical Quanturn Theory, II. Schrödinger Operators (Vancouver, BC, 1993), pp. 109–149. CRM Proc. Lecture Notes, 8. Amer. Math. Soc., Providence, RI, 1995.
  • — Operators with singular continuous spectrum. VII. Examples with borderline time decay. Comm. Math. Phys., 176 (1996), 713–722.
  • — Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Amer. Math. Soc., 124 (1996), 3361–3369.
  • Simon, B. & Spencer, T., Trace class perturbations and the absence of absolutely continuous spectra. Comm. Math. Phys., 125 (1989), 113–125.
  • Simon, B. & Stolz, G., Operators with singular continuous spectrum, V. Sparse potentials. Proc. Amer. Math. Soc., 124 (1996), 2073–2080.