Acta Mathematica

Convexity estimates for mean curvature flow and singularities of mean convex surfaces

Gerhard Huisken and Carlo Sinestrari

Full-text: Open access

Article information

Source
Acta Math., Volume 183, Number 1 (1999), 45-70.

Dates
Received: 4 June 1998
Revised: 19 April 1999
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891248

Digital Object Identifier
doi:10.1007/BF02392946

Mathematical Reviews number (MathSciNet)
MR1719551

Zentralblatt MATH identifier
0992.53051

Rights
1999 © Institut Mittag-Leffler

Citation

Huisken, Gerhard; Sinestrari, Carlo. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183 (1999), no. 1, 45--70. doi:10.1007/BF02392946. https://projecteuclid.org/euclid.acta/1485891248


Export citation

References

  • Andrews, B., Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differential Equations, 2 (1994), 151–171.
  • Caffarelli, L., Nirenberg, L. & Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math., 155 (1985), 261–301.
  • Gårding, L., An inequality for hyperbolic polynomials. J. Math. Mech., 8 (1959), 957–965.
  • Hamilton, R. S., Four-manifolds with positive curvature operator. J. Differential Geom., 24 (1986), 153–179.
  • —, The formation of singularities in the Ricci flow, in Surveys in Differential Geometry, Vol. II (Cambridge, MA, 1993), pp. 7–136. Internat. Press, Cambridge, MA, 1993.
  • — Harnack estimate for the mean curvature flow. J. Differential Geom., 41 (1995), 215–226.
  • Hardy, G. H., Littlewood, J. E. & Pólya, G., Inequalities. Cambridge Univ. Press, Cambridge, 1934.
  • Huisken, G., Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20 (1984), 237–266.
  • — Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math., 84 (1986), 463–480.
  • — Asymptotic behaviour for singularities of the mean curvature flow. J. Differential Geom., 31 (1990), 285–299.
  • — Local and global behaviour of hypersurfaces moving by mean curvature. Proc. Sympos. Pure Math., 54 (1993), 175–191.
  • Huisken, G. & Sinestrari, C., Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differential Equations, 8 (1999), 1–14.
  • Marcus, M. & Lopes, L., Inequalities for symmetric functions and Hermitian matrices. Canad. J. Math., 9 (1957), 305–312.
  • Smoczyk, K., Starshaped hypersurfaces and the mean curvature flow. Manuscripta Math., 95 (1998), 225–236.