Acta Mathematica

Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II

Serge Alinhac

Full-text: Open access

Article information

Source
Acta Math., Volume 182, Number 1 (1999), 1-23.

Dates
Received: 1 October 1997
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891202

Digital Object Identifier
doi:10.1007/BF02392822

Mathematical Reviews number (MathSciNet)
MR1687180

Zentralblatt MATH identifier
0973.35135

Rights
1999 © Institut Mittag-Leffler

Citation

Alinhac, Serge. Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II. Acta Math. 182 (1999), no. 1, 1--23. doi:10.1007/BF02392822. https://projecteuclid.org/euclid.acta/1485891202


Export citation

References

  • Alinhac, S., Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations, 14 (1989), 173–230.
  • —, Approximation près du temps d'explosion des solutions d'équations d'ondes quasilinéaires en dimension deux. Siam J. Math. Anal., 26 (1995), 529–565.
  • —, Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux, II. Duke Math. J., 73 (1994), 543–560.
  • —, Explosion géométrique pour des systèmes quasi-linéaires. Amer. J. Math., 117 (1995), 987–1017.
  • —, Explosion des solutions d'une équation d'ondes quasi-linéaire en deux dimensions d'espace. Comm. Partial Differential Equations, 21 (1996), 923–969.
  • Alinhac, S., Blowup of small data solutions for a quasilinear wave equation in two space dimensions. To appear in Ann. of Math.
  • —, Blowup for Nonlinear Hyperbolic Equations, Progr. Nonlinear Differential Equations Appl., 17. Birkhäuser Boston, Boston, MA, 1995.
  • Alinhac, S., Stability of geometric blowup. Preprint, Université Paris-Sud, 1997.
  • Alinhac, S. & Gérard, P., Opérateurs pseudo-différentiels et théorème de Nash-Moser. InterEditions, Paris, 1991.
  • Hörmander, L., The lifespan of classical solutions of nonlinear hyperbolic equations, in Pseudodifferential Operators (Oberwolfach, 1986), pp. 214–280. Lecture Notes in Math., 256. Springer-Verlag, Berlin-New York, 1986.
  • —, Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl., 26. Springer-Verlag, Berlin, 1997.
  • John, F., Nonlinear Wave Equations, Formation of Singularities. Univ. Lecture Ser., 2. Amer. Math. Soc., Providence, RI, 1990.
  • Klainerman, S., Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math., 38 (1985), 321–332.
  • —, The null condition and global existence to nonlinear wave equations, in Nonlinear Systems of Partial Differential Equations in Applied mathematics, Part 1 (Santa Fe, NM, 1984), pp. 293–326. Lectures in Appl. Math., 23. Amer. Math. Soc., Providence, RI, 1986.
  • Majda, A., Compressible Fluid Flow and Systems of Gonservation Laws in Several Space Variables. Appl. Math. Sci., 53. Springer-Verlag, New York-Berlin, 1984.