Acta Mathematica

Pluricomplex energy

Urban Cegrell

Full-text: Open access

Article information

Source
Acta Math., Volume 180, Number 2 (1998), 187-217.

Dates
Received: 25 October 1996
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891142

Digital Object Identifier
doi:10.1007/BF02392899

Mathematical Reviews number (MathSciNet)
MR1638768

Zentralblatt MATH identifier
0926.32042

Rights
1998 © Institut Mittag-Leffler

Citation

Cegrell, Urban. Pluricomplex energy. Acta Math. 180 (1998), no. 2, 187--217. doi:10.1007/BF02392899. https://projecteuclid.org/euclid.acta/1485891142


Export citation

References

  • Bedford, E., Survey of pluripotential theory, in Several Complex Variables (Stockholm, 1987/88), pp. 48–95. Math. Notes, 38. Princeton Univ. Press, Princeton, NJ, 1993.
  • Bedford, E. & Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math., 37 (1976), 1–44.
  • —, A new capacity for plurisubharmonic functions. Acta Math., 149 (1982), 1–40.
  • Blocki, Z., Estimates for the complex Monge-Ampère operator. Bull. Pol. Acad. Sci. Math., 41 (1993), 151–157.
  • Caffarelli, L., Kohn, J. J., Nirenberg, L. & Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations II: complex Monge-Ampère and uniformly elliptic equations. Comm. Pure Appl. Math., 38 (1985), 209–252.
  • Cegrell, U., On the Dirichlet problem for the complex Monge-Ampère operator. Math. Z., 185 (1984), 247–251.
  • —, Capacities in Complex Analysis. Aspects of Math., E14. Vieweg, Braunschweig, 1988.
  • —, Sums of continuous plurisubharmonic functions and the complex Monge-Ampère operator. Math. Z., 193 (1986), 373–380.
  • —, Discontinuité de l'opérateur Monge-Ampère complexe. C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 869–871.
  • Cegrell, U. & Kołodziej, S., The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures. Michigan Math. J., 41 (1994), 563–569.
  • Cegrell, U. & Persson, L., The Dirichlet problem for the complex Monge-Ampère operator: stability in L2. Michigan Math. J., 39 (1992), 145–151.
  • —, An energy estimate for the complex Monge-Ampère operator. Ann. Polon. Math., 67 (1997), 95–102.
  • Demailly, J.-P., Monge-Ampère operators, Lelong numbers and intersection theory, in Complex Analysis and Geometry (V. Ancona and A. Silva, eds.), pp. 115–193. Univ. Ser. Math., Plenum Press, New York, 1993.
  • Kiselman, C. O., Sur la définition de l'opérateur de Monge-Ampère complexe, in Complex Analysis (Toulouse, 1983), pp. 139–150. Lecture Notes in Math., 1094. Springer-Verlag, Berlin-New York, 1984.
  • Kołodziej, S., The range of the complex Monge-Ampère operator, II. Indiana Univ. Math. J., 44 (1995), 765–782.
  • —, The complex Monge-Ampère equation. Acta Math., 180 (1998), 69–117.
  • Persson, L., On the Dirichlet problem for the complex Monge-Ampère operator. Doctoral Thesis, University of Umeå, 1992.
  • Persson, L., A Dirichlet principle for the complex Monge-Ampère operator. To appear in Ark. Mat.
  • Rainwater, J., A note on the preceding paper. Duke Math. J., 36 (1969), 798–800.
  • Siu, Y.-T., Extension of meromorphic maps. Ann. of Math., 102 (1975), 421–462.
  • Xing, Y., Continuity of the complex Monge-Ampère operator. Proc. Amer. Math. Soc., 124 (1996), 457–467.