Acta Mathematica

Cut points and canonical splittings of hyperbolic groups

Brian H. Bowditch

Full-text: Open access

Article information

Source
Acta Math., Volume 180, Number 2 (1998), 145-186.

Dates
Received: 25 November 1996
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891141

Digital Object Identifier
doi:10.1007/BF02392898

Mathematical Reviews number (MathSciNet)
MR1638764

Zentralblatt MATH identifier
0911.57001

Rights
1998 © Institut Mittag-Leffler

Citation

Bowditch, Brian H. Cut points and canonical splittings of hyperbolic groups. Acta Math. 180 (1998), no. 2, 145--186. doi:10.1007/BF02392898. https://projecteuclid.org/euclid.acta/1485891141


Export citation

References

  • [AN] Adeleke, S. A. & Neumann, P. M., Relations Related to Betweenness: Their Structure and Automorphisms. Mem. Amer. Math. Soc., 623. Amer. Math. Soc., Providence, RI, 1998.
  • [BM] Bestvina, M. & Mess, G., The boundary of negatively curved groups. J. Amer. Math. Soc., 4 (1991), 469–481.
  • [Bo1] Bowditch, B. H., Treelike Structures Arising from Continua and Convergence Groups. To appear in Mem. Amer. Math. Soc.
  • [Bo2] Bowditch, B. H., Group actions on trees and dendrons. To appear in Topology.
  • [Bo3] Bowditch, B. H., Boundaries of strongly accessible hyperbolic groups. Preprint, Melbourne, 1996.
  • [Bo4] Bowditch, B. H., Convergence groups and configuration spaces. To appear in Group Theory Down Under (J. Cossey, C. F. Miller, W. D. Neumann and M. Shapiro, eds.), de Gruyter.
  • [Bo5] Bowditch, B. H., Connectedness properties of limit sets. To appear in Trans. Amer. Math. Soc.
  • [Bo6] Bowditch, B. H., A topological characterisation of hyperbolic groups. To appear in J. Amer. Math. Soc.
  • [CJ] Casson, A. & Jungreis, D., Convergence groups and Seifert fibered 3-manifolds. Invent. Math., 118 (1994), 441–456.
  • [DD] Dicks, W. & Dunwoody, M. J., Groups Acting on Graphs. Cambridge Stud. Adv. Math., 17. Cambridge Univ. Press, Cambridge-New York, 1989.
  • [DP] Delzant, T. & Potyagailo, L., Accessibilité hiérarchique des groupes de présentation finie. Preprint, Strasbourg/Lille, 1998.
  • [DSa] Dunwoody, M. J. & Sageev, M. E., JSJ-splittings for finitely presented groups over slender subgroups. To appear in Invent. Math.
  • [DSw] Dunwoody, M. J. & Swenson, E. L. The algebraic annulus theorem. Preprint, Southampton, 1996.
  • [Du] Dunwoody, M. J., The accessibility of finitely presented groups. Invent. Math., 81 (1985), 449–457.
  • [FP] Fujiwara, K. & Papasoglu, P., JSJ decompositions of finitely presented groups and complexes of groups. Preprint, 1997.
  • [Fr] Freden, E. M., Negatively curved groups have the convergence property. Ann. Acad. Sci. Fenn. Ser. A I Math., 20 (1995), 333–348.
  • [Ga] Gabai, D., Convergence groups are Fuchsian groups. Ann. of Math., 136 (1992), 447–510.
  • [GH] Ghys, E. & Harpe, P. de la, Sur les groupes hyperboliques d'après Mikhael Gromov. Progr. Math., 83. Birkhäuser, Boston, MA, 1990.
  • [GM1] Gehring, F. W. & Martin, G. J., Discrete quasiconformal groups, I. Proc. London Math. Soc., 55 (1987), 331–358.
  • [GM2] Gehring, F. W. & Martin, G. J., Discrete quasiconformal groups, II. Handwritten notes.
  • [Gr] Gromov, M., Hyperbolic groups, in Essays in Group Theory (S. M. Gersten, ed.), pp. 75–263. Math. Sci. Res. Inst. Publ., 8. Springer-Verlag, New York-Berlin, 1987.
  • [Gu] Guralnik, D. P., Constructing a splitting-tree for a cusp-finite group acting on a Peano continuum (Hebrew). M.Sc. Dissertation, Technion, Haifa, 1998.
  • [HY] Hocking, J. G. & Young, G. S., Topology. Addison-Wesley, Reading, MA, 1961.
  • [Jo] Johannson, K., Homotopy Equivalences of 3-Manifolds with Boundaries. Lecture Notes in Math., 761. Springer-Verlag, Berlin-New York, 1979.
  • [JS] Jaco, W. H. & Shalen, P. B., Seifert Fibered Spaces in 3-Manifolds. Mem. Amer. Math. Soc., 220. Amer. Math. Soc., Providence, RI, 1979.
  • [K] Kropholler, P. H., A group-theoretic proof of the torus theorem, in Geometric Group Theory, Vol. 1 (Sussex, 1991), pp. 138–158. London Math. Soc. Lecture Note Ser., 181. Cambridge Univ. Press, Cambridge, 1993.
  • [L] Levitt, G., Non-nesting actions on real trees. Bull. London Math. Soc., 30 (1998), 46–54.
  • [MNS] Miller III, C. F., Neumann, W. D. & Swarup, G. A., Some examples of hyperbolic groups. To appear in Group Theory Down Under (J. Cossey, C. F. Miller, W. D. Neumann and M. Shapiro, eds.), de Gruyter.
  • [P] Paulin, F., Outer automorphisms of hyperbolic groups and small actions on R-trees, in Arboreal Group Theory (Berkeley, CA, 1988), pp. 331–343. Math. Sci. Res. Inst. Publ., 19. Springer-Verlag, New York, 1991.
  • [RS] Rips, E. & Sela, Z., Cyclic splittings of finitely presented groups and the canonical JSJ decomposition. Ann. of Math., 146 (1997), 53–109.
  • [Se] Sela, Z., Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II. Geom. Funct. Anal., 7 (1997), 561–593.
  • [Sha] Shalen, P. B., Dendrology and its applications, in Group Theory from a Geometrical Viewpoint (Trieste, 1990), pp. 543–616. World Sci. Publishing, River Edge, NJ, 1991.
  • [Sho] Short, H., Quasiconvexity and a theorem of Howson's, in Group Theory from a Geometrical Viewpoint (Trieste, 1990), pp. 168–176. World Sci. Publishing, River Edge, NJ, 1991.
  • [SS] Scott, P. & Swarup, G. A., An algebraic annulus theorem. Preprint.
  • [St] Stallings, J. R., Group Theory and Three-Dimensional Manifolds. Yale Math. Monographs, 4. Yale Univ. Press, New Haven, 1971.
  • [Sw] Swarup, G. A., On the cut point conjecture. Electron. Res. Announc. Amer. Math. Soc., 2 (1996), 98–100 (electronic).
  • [T1] Tukia, P., Homeomorphic conjugates of Fuchsian groups. J. Reine Angew. Math., 391 (1988), 1–54.
  • [T2] —, Convergence groups and Gromov's metric hyperbolic spaces. New Zealand J. Math., 23 (1994), 157–187.
  • [W] Ward, L. E., Axioms for cutpoints, in General Topology and Modern Analysis (Univ. of California, Riverside, CA, 1980), pp. 327–336. Academic Press, New York-London, 1981.