Acta Mathematica

The complex Monge-Ampère equation

Sławomir Kołodziej

Full-text: Open access

Note

Partially supported by KBN Grant No. 2 PO3A 058 09

Article information

Source
Acta Math. Volume 180, Number 1 (1998), 69-117.

Dates
Received: 1 February 1996
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485891130

Digital Object Identifier
doi:10.1007/BF02392879

Rights
1998 © Institut Mittag-Leffler

Citation

Kołodziej, Sławomir. The complex Monge-Ampère equation. Acta Math. 180 (1998), no. 1, 69--117. doi:10.1007/BF02392879. https://projecteuclid.org/euclid.acta/1485891130.


Export citation

References

  • [A] Alexander, H., Projective capacity, in Recent Developments in Several Complex Variables (Princeton, NJ, 1979), pp. 3–27. Ann. of Math. Stud., 100. Princeton Univ. Press, Princeton, NJ, 1981.
  • [AT] Alexander, H. & Taylor, B. A., Comparison of two capacities in Cn. Math. Z., 186 (1984), 407–417.
  • [Au1] Aubin, T., Equations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math., 102 (1978), 63–95.
  • [Au2] —, Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Grundlehren Math. Wiss., 244. Springer-Verlag, Berlin-Heidelberg-New York, 1982.
  • [Be] Bedford, E., Survey of pluripotential theory, in Several Complex Variables (Stockholm, 1987/1988). Mathematical Notes, 38. Princeton Univ. Press, Princeton, NJ, 1993.
  • [Bl] Błocki, Z., The complex Monge-Ampère operator in hyperconvex domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 721–747.
  • [BT1] Bedford, E. & Taylor, B. A., The Dirichlet problem for the complex Monge-Ampère operator. Invent. Math., 37 (1976), 1–44.
  • [BT2] —, A new capacity for plurisubharmonic functions. Acta Math., 149 (1982), 1–40.
  • [BT3] —, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth. Indiana Univ. Math. J., 38 (1989), 455–469.
  • [Ce1] Cegrell, U., Discontinuité de l'opérateur de Monge-Ampère complexe. C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 869–871.
  • [Ce2] —, On the Dirichlet problem for the complex Monge-Ampère operator. Math. Z., 185 (1984), 247–251.
  • [Ce3] —, Capacities in Complex Analysis. Aspects of Mathematics, E14. Vieweg, Braunschweig, 1988.
  • [CK1] Cegrell, U. & Kołodziej, S., The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures. Michigan Math. J., 41 (1994), 563–569.
  • [CK2] Cegrell, U. & Kołodziej, S., The global Dirichlet problem for the complex Monge-Ampère equation. To appear in J. Geom. Anal.
  • [CKL] Cegrell, U., Kołodziej, S. & Levenberg, N., Potential theory for unbounded sets. To appear in Math. Scand.
  • [CKNS] Caffarelli, L., Kohn, J. J., Nirenberg, L. & Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Comm. Pure Appl. Math., 38 (1985), 209–252.
  • [CLN] Chern, S. S., Levine, H. I. & Nirenberg, L., Intrinsic norms on a complex manifold, in Global Analysis (Papers in Honour of K. Kodaira), pp. 119–139. Univ. Tokyo Press, Tokyo, 1969.
  • [CP] Cegrell, U. & Persson, L., The Dirichlet problem for the complex Monge-Ampère operator: stability in L2. Michigan Math. J., 39 (1992), 145–151.
  • [CS] Cegrell, U. & Sadullaev, A., Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge-Ampère operator. Math. Scand., 71 (1993), 62–68.
  • [CY] Cheng, S. Y. & Yau, S.-T., On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation. Comm. Pure Appl. Math., 33 (1980), 507–544.
  • [CZ] Calderón, A. P. & Zygmund, A., On the existence of certain singular integrals. Acta Math., 88 (1952), 85–139.
  • [D1] Demailly, J.-P., Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. France (N.S.), 19 (1985), 1–124.
  • [D2] —, Monge-Ampère operators, Lelong numbers and intersection theory, in Complex Analysis and Geometry (V. Ancona and A. Silva, eds.), pp. 115–193. Univ. Ser. Math. Plenum, New York, 1993.
  • [D3] —, Regularization of closed positive currents and intersection theory. J. Algebraic Geom., 1 (1992), 361–409.
  • [GT] Gilbarg, D. & Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss., 244. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
  • [H] Hörmander, L., The Analysis of Linear Partial Differential Operators, I. Springer-Verlag, Berlin-New York, 1983.
  • [Kl] Klimek, M., Pluripotential Theory. Oxford Univ. Press, New York, 1991.
  • [Ko1] Kołodziej, S., The range of the complex Monge-Ampère operator. Indiana Univ. Math. J., 43 (1994), 1321–1338.
  • [Ko2] —, The range of the complex Monge-Ampère operator, II. Indiana Univ. Math. J., 44 (1995), 765–782.
  • [Ko3] —, Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator. Ann. Polon. Math., 65 (1996), 11–21.
  • [Lel] Lelong, P., Discontinuité et annulation de l'opérateur de Monge-Ampère complexe, in Sèminaire P. Lelong, P. Dolbeault, H. Skoda (Analyse), 1981/1983, pp. 219–224. Lecture Notes in Math., 1028. Springer-Verlag, Berlin-New York, 1983.
  • [Lem] Lempert, L., Solving the degenerate Monge-Ampère equation with one concentrated singularity. Math. Ann., 263 (1983), 515–532.
  • [LG] Lelong, P. & Gruman, L., Entire Functions of Several Complex Variables. Grundlehren Math. Wiss., 282. Springer-Verlag, Berlin-New York, 1986.
  • [M] Musielak, J., Orlicz spaces and Modular Spaces. Lecture Notes in Math., 1034. Springer-Verlag, Berlin-New York, 1988.
  • [P] Persson, L., On the Dirichlet Problem for the Complex Monge-Ampère Operator. Doctoral Thesis No. 1, University of Umeå, 1992.
  • [S] Siciak, J., Extremal Plurisubharmonic Functions and Capacities inCn. Sophia University, Tokyo, 1982.
  • [Ta] Taylor, B. A., An estimate for an extremal plurisubharmonic function on Cn, in Sèminaire P. Lelong, P. Dolbeault, H. Skoda (Analyse), 1981/1983, pp. 318–328. Lecture Notes in Math., 1028. Springer-Verlag, Berlin-New York, 1983.
  • [Ts] Tsuji, M., Potential Theory in Modern Function Theory. Maruzen, Tokyo, 1959.
  • [TY1] Tian, G. & Yau, S.-T., Complete Kähler manifolds with zero Ricci curvature, I. J. Amer. Math. Soc., 3 (1990), 579–610.
  • [TY2] —, Complete Kähler manifolds with zero Ricci curvature, II. Invent. Math., 106 (1991), 27–60.
  • [X] Xing, Y., Continuity of the complex Monge-Ampère operator. Proc. Amer. Math. Soc., 124 (1996), 457–467.
  • [Y] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. Comm. Pure Appl. Math., 31 (1978), 339–411.