Acta Mathematica

Algebraicity of holomorphic mappings between real algebraic sets in Cn

M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild

Full-text: Open access


The first and third authors were partially supported by National Science Foundation Grant DMS 95-01516. The second author was supported by a grant from the Swedish natural Science Research Council and would like to thank the University of California, San Diego, for its hospitality during the preparation of this paper.

Article information

Acta Math., Volume 177, Number 2 (1996), 225-273.

Received: 19 February 1996
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1996 © Institut Mittag-Leffler


Baouendi, M. S.; Ebenfelt, P.; Rothschild, L. P. Algebraicity of holomorphic mappings between real algebraic sets in C n. Acta Math. 177 (1996), no. 2, 225--273. doi:10.1007/BF02392622.

Export citation


  • [BB] Bedford, E. & Bell, S., Extension of proper holomorphic mappings past the boundary. Manuscripta Math. 50 (1985), 1–10.
  • [BCR] Bochnak, J., Coste, M. & Roy, M.-F., Géometrie algébrique réelle. Springer-Verlag, Berlin-Heidelberg, 1987.
  • [BER] Baouendi, M. S., Ebenfelt, P. & Rothschild, L. P., Infinitesimal CR automorphisms of real-analytic manifolds in complex space. To appear in Comm. Anal. Geom.
  • [BG] Bloom, T. & Graham, I., On type conditions for generic real submanifolds of Cn. Invent. Math., 40 (1977), 217–243.
  • [BHR] Baouendi, M. S., Huang, X. & Rothschild, L. P., Regularity of CR mappings between algebraic hypersurfaces. Invent. Math., 125 (1996), 13–36.
  • [BJT] Baouendi, M. S., Jacobowitz, H. & Treves, F., On the analyticity of CR mappings. Ann. of Math., 122 (1985), 365–400.
  • [BM] Bochner, S. & Martin, W. T., Several Complex Variables. Princeton Univ. Press, Princeton, NJ, 1948.
  • [BR1] Baouendi, M. S. & Rothschild, L. P., Normal forms for generic manifolds and holomorphic extension of CR functions. J., Differential Geom., 25 (1987), 431–467.
  • [BR2]—, Geometric properties of mappings between hypersurfaces in complex space. J. Differential Geom., 31 (1990), 473–499.
  • [BR3]— Mappings of real algebraic hypersurfaces. J. Amer. Math. Soc. 8 (1995), 997–1015.
  • [BR4]—, Holomorphic mappings between algebraic hypersurfaces in complex space, in Séminaire Équations aux Derivées Partielles, 1994–95. École Polytechnique, Palaiseau, 1995.
  • [CJ] Chern, S. S. & JI, S., Projective geometry and Riemann's mapping problem. Math. Ann., 302 (1995), 581–600.
  • [CM] Chern, S. S. & Moser, J. K., Real hypersurfaces in complex amnifolds. Acta Math., 133 (1974), 219–271.
  • [DF] Diederich, K. & Fornaess, J. E., Proper holomorphic mappings between real-analytic pseudoconvex domains in Cn. Math. Ann., 282 (1988), 681–700.
  • [DW] Diederich, K. & Webster, S., A reflection principle for degenerate hypersurfaces. Duke Math. J., 47 (1980), 835–843.
  • [F] Forstnerič, F., Extending proper holomorphic mappings of positive codimension. Invent. Math., 95 (1989), 31–62.
  • [H] Huang, X., On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions. Ann. Inst. Fourier (Grenoble) 44 (1994), 433–463.
  • [HP] Hodge, W. H. D. & Pedoe, D., Methods of Algebraic Geometry, Vol. 2. Cambridge Univ. Press, Cambridge, 1952.
  • [N] Nagano, T., Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Japan, 18 (1966), 398–404.
  • [P] Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo, 23 (1907), 185–220.
  • [Seg] Segre, B., Intorno al problema di Poincaré della rappresentazione pseudo-conforme. Atti R. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (6), 13 (1931), 676–683.
  • [Ser] Serre, J.-P., Géometrie algébrique et géometrie analytique. Ann. Inst. Fourier (Grenoble), 6 (1955), 1–42.
  • [SS] Sharipov, R. & Sukhov, A., On CR-mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions. Preprint, Université de Provence, Marseille, 1995.
  • [St1] Stanton, N., Infinitesimal CR automorphisms of rigid hypersurfaces. Amer. J. Math., 117 (1995), 141–167.
  • [St2]—, Infinitesimal Cr automorphisms. Amer. J. Math., 118 (1996), 209–233.
  • [Ta] Tanaka, N., On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables. J. Math. Soc. Japan, 14 (1962), 397–429.
  • [TH] Tumanov, A. E. & Henkin, G. M., Local characterization of holomorphic automorphisms of Siegel domains. Funktsional. Anal. i Prilozhen., 17 (1983), 49–61; English translation in Functional Anal. Appl., 17 (1983).
  • [Tu1] Tumanov, A. E., Extending CR functions on manifolds of finite type to a wedge. Mat. Sb. (N.S.), 136 (1988), 128–139.
  • [Tu2]—, Finite-dimensionality of the group of CR automorphisms of a standard CR manifold, and proper holomorphic mappings of Siegel domains. Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 651–659; English translation in Math. USSR-Izv., 32 (1989), 655–662.
  • [W1] Webster, S., On the mapping problem for algebraic real hypersurfaces. Invent. Math., 43 (1977), 53–68.
  • [W2]—, On mapping an n-ball into an (n+1)-ball in complex space. Pacific J. Math., 81 (1979), 267–272.
  • [W3] Webster, S. Geometric and dynamical aspects of real submanifolds of complex space. To appear in Proceedings of the International Congress of Mathematicians, Zürich, 1994.