Acta Mathematica

On Leray's self-similar solutions of the Navier-Stokes equations

J. Nečas, M. Růžička, and V. Šverák

Full-text: Open access

Article information

Source
Acta Math. Volume 176, Number 2 (1996), 283-294.

Dates
Received: 8 August 1995
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890940

Digital Object Identifier
doi:10.1007/BF02551584

Zentralblatt MATH identifier
0884.35115

Rights
1996 © Institut Mittag-Leffler

Citation

Nečas, J.; Růžička, M.; Šverák, V. On Leray's self-similar solutions of the Navier-Stokes equations. Acta Math. 176 (1996), no. 2, 283--294. doi:10.1007/BF02551584. https://projecteuclid.org/euclid.acta/1485890940


Export citation

References

  • [Br] Browder, F., Regularity of solutions of elliptic equations. Comm. Pure Appl. Math., 9 (1956), 351–361.
  • [Ca] Cattabriga, L., Su un problema al retorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340.
  • [CKN] Caffarelli, L., Kohn, R. & Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35 (1982), 771–831.
  • [CZ] Calderón, A. P. & Zygmund, A., On existence of certain singular integrals. Acta Math., 88 (1952), 85–139.
  • [FR1] Frehse, J. & Růžička, M., On the regularity of the stationary Navier-Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 63–95.
  • [FR2] — Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal., 128 (1994), 361–381.
  • [Ga] Galdi, G. P., An Introduction to the Mathematical Theory of Navier-Stokes Equations, Vol. 1: Linearized stationary problems. Springer Tracts Nat. Philos. 38. Springer-Verlag, New York, 1994.
  • [Gi] Giga, Y., Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes equations with data in Lp, J. Differential Equations, 62 (1986), 186–212.
  • [GT] Gilbarg, D. & Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 2nd edition. Grundlehren Math. Wiss. 224. Springer-Verlag, Berlin-New York, 1983.
  • [GW] Gilbarg, D. & Weinberger, H. F., Asymptotic properties of Leray's solution of the stationary two-dimensional Navier-Stokes equations. Russian Math. Surveys, 29:2 (1974), 109–123.
  • [La] Ladyzhenskaya, O., The Mathematical Theory of Viscous Incompressible Flow, 2nd English edition. Math. Appl., 2. Gordon and Breach, New York, 1969.
  • [Le] Leray, J., Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 63 (1934), 193–248.
  • [LUS] Ladyzhenskaya, O., Ural'ceva, N. & Solonnikov, V., Linear and Quasi-Linear Equations of Parabolic Type. Transl. Math. Monographs, 23. Amer. Math. Soc., Providence, RI, 1968.
  • [Mo] Morrey, Ch. B., Multiple Integrals in the Calculus of Variations. Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966.
  • [Oh] Ohyama, T., Interior regularity of weak solutions of the time-dependent Navier-Stokes equation. Proc. Japan Acad. Ser. A Math. Sci., 36 (1960), 273–277.
  • [Sch] Scheffer, V., Partial regularity of solutions to the Navier-Stokes equations. Pacific J. Math., 66 (1976), 535–552.
  • [Se1] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 9 (1962), 187–195.
  • [Se2] —, Mathematical principles of classical fluid mechanics, in Handbuch der Physik, 8:1, pp. 125–263. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.
  • [So] Sohr, H., Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z., 184 (1983), 359–376.
  • [St] Stein, E., Singular Integrals and the Differentiability Properties of Functions. Princeton Math. Ser., 30. Princeton Univ. Press, Princeton, NJ, 1970.
  • [Str1] Struwe, M., On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math., 41 (1988), 437–458.
  • [Str2] Struwe, M. Regular solutions of the stationary Navier-Stokes equations on R5. To appear in Math. Ann.
  • [Ta] Takahashi, S., On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math., 67 (1990), 237–254.
  • [vW] Wahl, W. von, The Equations of Navier-Stokes and Abstract Parabolic Equations. Aspects of Math., E8. Vieweg, Braunschweig, 1985.