Acta Mathematica

On stability of exterior stationary Navier-Stokes flows

Wolfgang Borchers and Tetsuro Miyakawa

Full-text: Open access

Dedication

Dedicated to Professor Fumi-Yuki Maeda on his 60th birthday

Article information

Source
Acta Math. Volume 174, Number 2 (1995), 311-382.

Dates
Received: 26 April 1993
Revised: 27 August 1993
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890854

Digital Object Identifier
doi:10.1007/BF02392469

Zentralblatt MATH identifier
0847.35099

Rights
1995 © Almqvist & Wiksell

Citation

Borchers, Wolfgang; Miyakawa, Tetsuro. On stability of exterior stationary Navier-Stokes flows. Acta Math. 174 (1995), no. 2, 311--382. doi:10.1007/BF02392469. https://projecteuclid.org/euclid.acta/1485890854


Export citation

References

  • Agmon, S., Douglis, A. & Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math., 17 (1964), 35–92.
  • Bergh, J. & Löfström, J., Interpolation Spaces. Springer-Verlag, Berlin, 1976.
  • Borchers, W. & Miyakawa, T., L2 decay for the Navier-Stokes flow in halfspaces. Math. Ann., 282 (1988), 139–155.
  • —, Algebraic L2 decay for Navier-Stokes flows in exterior domains. Acta Math., 165 (1990), 189–227.
  • —, Algebraic L2 decay for Navier-Stokes flows in exterior domains. II. Hiroshima Math. J., 21 (1991), 621–640.
  • —, L2 decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Rational Mech. Anal., 118 (1992), 273–295.
  • —, On some coercive estimates for the Stokes problem in unbounded domains, in Navier-Stokes Equations II: Theory and Numerical Methods (J.G. Heywood et al., eds.), pp. 71–84. Lecture Notes in Math., 1530, Springer-Verlag, Berlin-New York, 1992.
  • Borchers, W. & Sohr, H., On the semigroup of the Stokes operator for exterior domains in Lq spaces. Math. Z., 196 (1987), 415–425.
  • Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340.
  • Chang, I-D. & Finn, R., On the solutions of a class of equations occurring in continuum mechanics, with application to the Stokes paradox. Arch. Rational Mech. Anal., 7 (1961), 388–401.
  • Chen, Z.-M., Solutions of the stationary and nonstationary Navier-Stokes equations in exterior domains. Pacific J. Math., 159 (1993), 227–240.
  • Deuring, P. & Varnhorn, W., Schauder estimates for the single layer potential in hydrodynamics. Math. Nachr., 157 (1992), 277–289.
  • Finn, R., On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Rational Mech. Anal., 19 (1965), 363–406.
  • —, Mathematical questions relating to viscous fluid flow in an exterior domain. Rocky Mountain J. Math., 3 (1973), 107–140.
  • Friedman, A., Partial Differential Equations. Holt, Rinehart and Winston, New York-Montreal-London, 1969.
  • Galdi, G. P. & Padula, M., Existence of steady incompressible flows past an obstacle. Preprint, 1990.
  • Galdi, G. P. & Simader, C. G., Existence, uniqueness and Lq estimates for the Stokes problem in an exterior domain. Arch. Rational Mech. Anal., 112 (1990), 291–318.
  • Giga, Y., Miyakawa, T. & Osada, H., Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal., 104 (1988), 223–250.
  • Giga, Y. & Sohr, H., On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103–130.
  • Heywood, J. G., On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions. Arch. Rational Mech. Anal., 37 (1970), 48–60.
  • —, The exterior nonstationary problem for the Navier-Stokes equations. Acta Math., 129 (1972), 11–34.
  • —, The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J., 29 (1980), 639–681.
  • Iwashita, H., Lq-L estimates for solutions of nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in Lq spaces. Math. Ann., 285 (1989), 265–288.
  • Kajikiya, R. & Miyakawa, T., On L2 decay of weak solutions of the Navier-Stokes equations in Rn. Math. Z., 192 (1986), 135–148.
  • Kozono, H. & Ogawa, T., On stability of the Navier-Stokes flows in exterior domains. Preprint, 1992.
  • Kozono, H., Ogawa, T. & Sohr, H., Asymptotic behavior in L for weak solutions of the Navier-Stokes equations in exterior domains. Manuscripta Math., 74 (1992), 253–275.
  • Kozono, H. & Sohr, H., On stationary Navier-Stokes equations in unbounded domains. Preprint, 1992.
  • Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York, 1969.
  • Leray, J., Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. (9), 12 (1933), 1–82.
  • Martinez, C., Sanz, M. & Marco, L., Fractional powers of operators. J. Math. Soc. Japan, 40 (1988), 331–347.
  • Masuda, K., On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Japan, 27 (1975), 294–327.
  • —, Weak solutions of the Navier-Stokes equations. Tôhoku Math. J., 36 (1984), 623–646.
  • Miyakawa, T., On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math. J., 12 (1982), 115–140.
  • Miyakawa, T. & Sohr, H., On energy inequality, smoothness and large time behavior in L2 for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z., 199 (1988), 455–478.
  • Novotny, A. & Padula, M., Note about decay of solutions of steady Navier-Stokes equations in 3-D exterior domains. To appear in Differential and Integral Equations.
  • Odqvist, F. K. G., Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z., 32 (1930), 329–375.
  • Reed, M. & Simon, B., Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness. Academic Press, New York, 1975.
  • Rham, G. de, Differentiable Manifolds. Springer-Verlag, Berlin, 1984.
  • Schonbek, M. E., L2 decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 88 (1985), 209–222.
  • —, Large time behaviour of solutions to the Navier-Stokes equations. Comm. Partial Differential Equations, 11 (1986), 733–763.
  • — Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Amer. Math. Soc., 4 (1991), 423–449.
  • Simader, C. G. & Sohr, H., A new approach to the Helmholtz decomposition and the Neumann problem in Lq spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equations, pp. 1–35. Ser. Adv. Math. Appl. Sci., 11. World Sci. Publishing, River Edge, NJ, 1992.
  • Stein, E. M., Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, 1970.
  • Tanabe, H., Equations of Evolution. Pitman, Boston-London, 1979.
  • Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam-New York, 1978.
  • Wiegner, M., Decay results for weak solutions of the Navier-Stokes equations in Rn. J. London Math. Soc., 35 (1987), 303–313.
  • —, Schauder estimates for boundary layer potentials. Math. Methods Appl. Sci., 16 (1993), 877–894.