Acta Mathematica

The distortion problem

Edward Odell and Thomas Schlumprecht

Full-text: Open access

Note

Partially supported by NSF Grants DMS-8903197, DMS-9208482 and TARP 235.

Note

Partially supported by NSF Grant DMS-9203753 and LEQSF.

Article information

Source
Acta Math., Volume 173, Number 2 (1994), 259-281.

Dates
Received: 23 September 1992
Revised: 31 January 1994
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890817

Digital Object Identifier
doi:10.1007/BF02398436

Mathematical Reviews number (MathSciNet)
MR1301394

Zentralblatt MATH identifier
0828.46005

Rights
1994 © Almqvist & Wiksell

Citation

Odell, Edward; Schlumprecht, Thomas. The distortion problem. Acta Math. 173 (1994), no. 2, 259--281. doi:10.1007/BF02398436. https://projecteuclid.org/euclid.acta/1485890817


Export citation

References

  • Benyamini, Y., The uniform classification of Banach spaces, in Texas Functional Analysis Seminar 1984/1985 (Austin, Tex.), pp. 15–38. Longhorn Notes, Univ. Texas Press, Austin, Tex., 1985.
  • Chaatit, F., Uniform homeomorphisms between unit spheres of Banach lattices. To appear in Pacific J. Math..
  • Daher, M., Homéomorphismes uniformes entre les sphères unites des espaces d'interpolation. Université Paris 7.
  • Diestel, J., Geometry of Banach Spaces—Selected Topics. Lecture Notes in Math., 485. Springer-Verlag, Berlin-New York, 1975.
  • Enflo, P., On a problem of Smirnov. Ark. Mat., 8 (1969), 107–109.
  • Figiel, T. & Johnson, W. B., A uniformly convex Banach space which contains no lp. Compositio Math., 29 (1974), 179–190.
  • Gillespie, T. A., Factorization in Banach function spaces. Indag. Math., 43 (1981), 287–300.
  • Gowers, W. T., Lipschitz functions on classical spaces. European J. Combin., 13 (1992), 141–151.
  • Gowers, W. T., Ph.D. Thesis, Cambridge University, 1990.
  • Gowers, W. T. & Maurey, B., The unconditional basic sequence problem. J. Amer. Math. Soc., 6 (1993), 851–874.
  • James, R. C., Uniformly nonsquare Banach spaces. Ann. of Math., 80 (1964), 542–550.
  • —, A nonreflexive Banach space that is uniformly nonoctohedral. Israel J. Math., 18 (1974), 145–155.
  • Jamison, R. E. & Ruckle, W. H., Factoring absolutely convergent series. Math. Ann., 224 (1976), 143–148.
  • Kalton, N. J., Differentials of complex interpolation processes for Kothe function spaces. Preprint.
  • Kalton, N. J., Private communication.
  • Krivine, J. L., Sous espaces de dimension finie des espaces de Banach réticulés. Ann. of Math., 104 (1976), 1–29.
  • Lindenstrauss, J. & Pełczyński, A., Contributions to the theory of classical Banach spaces. J. Funct. Anal., 8 (1971), 225–249.
  • Lindenstrauss, J. & Tzafriri, L., Classical Banach Spaces I, Springer-Verlag, Berlin-New York, 1977.
  • —, Classical Banach Spaces II. Springer-Verlag, Berlin-New York, 1979.
  • Lozanovskii, G. Ya., On some Banach lattices. Siberian Math. J., 10 (1969), 584–599.
  • —, On some Banach lattices III. Siberian Math. J., 13 (1972), 1304–1313.
  • Maurey, B., A remark about distortion. Preprint.
  • Maurey, B. & Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math., 58 (1976), 45–90.
  • Maurey, B. & Rosenthal, H., Nermalized weakly null sequences with no unconditional subsequences. Studia Math., 61 (1977), 77–98.
  • Mazur, S., Une remarque sur l'homéomorphisme des champs fonctionnels. Studia Math., 1 (1930), 83–85.
  • Milman, V., Geometric theory of Banach spaces II: Geometry of the unit sphere. Russian Math. Surveys, 26 (1971), 79–163.
  • —, The spectrum of bounded continuous functions defined on the unit sphere of a B-space. Funktsional. Anal. i Prilozhen., 3 (1969), 67–79 (Russian).
  • Milman, V. & Schechtman, G., Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Math., 1200. Springer-Verlag, Berlin-New York, 1986.
  • Milman, V. & Tomczak-Jaegermann, N., Asymptotic lp spaces and bounded distortions. Contemp. Math., 144 (1993), 173–195.
  • Pisier, G., The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Math., 94. Cambridge Univ. Press, Cambridge-New York, 1989.
  • Raynaud, Y., Espaces de Banach superstables, distances stables et homéomorphismes uniformes. Israel J. Math., 44 (1983), 33–52.
  • Ribe, M., Existence of separable uniformly homeomorphic non isomorphic Banach spaces. Israel J. Math., 48 (1984), 139–147.
  • Rosenthal, H., A characterization of Banach spaces containing l1. Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 2411–2413.
  • Schlumprecht, Th., An arbitrarily distortable Banach space. Israel J. Math., 76 (1991), 81–95.
  • Schlumprecht, Th., A complementably minimal Banach space not containing co or lp, in Seminar Notes in Functional Analysis and PDE's, pp. 169–181, Louisiana State University, 1991/1992.
  • Szarek, S. & Tomczak-Jaegermann, N., On nearly Euclidean decomposition for some classes of Banach spaces. Compositio Math., 40 (1980), 367–385.
  • Tomczak-Jaegermann, N., Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs Surveys Pure Appl. Math., 38. Longman Sci. Tech., Harlow, 1989.
  • Tsirelson, B. S., Not every Banach space contains lp or co. Functional Anal. Appl., 8 (1974), 138–141.