Acta Mathematica

On measure rigidity of unipotent subgroups of semisimple groups

Marina Ratner

Full-text: Open access

Note

Partially supported by Guggenheim Foundation Fellowship and NSF Grant DMS-8701840.

Article information

Source
Acta Math., Volume 165 (1990), 229-309.

Dates
Received: 24 May 1989
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890621

Digital Object Identifier
doi:10.1007/BF02391906

Mathematical Reviews number (MathSciNet)
MR1075042

Zentralblatt MATH identifier
0745.28010

Rights
1990 © Almqvist & Wiksell

Citation

Ratner, Marina. On measure rigidity of unipotent subgroups of semisimple groups. Acta Math. 165 (1990), 229--309. doi:10.1007/BF02391906. https://projecteuclid.org/euclid.acta/1485890621


Export citation

References

  • [B] Bowen, R., Weak mixing and unique ergodicity on homogeneous spaces. Israel J. Math., 23 (1976), 267–273.
  • [BM] Brezin, J. & Moore, C., Flows on homogeneous spaces: a new look. Amer. J. Math., 103 (1981), 571–613.
  • [D1] Dani, S. G., Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math., 47 (1978), 101–138.
  • [D2]—, Invariant measures and minimal sets of horospherical flows. Invent. Math., 64 (1981), 357–385.
  • [EP] Ellis, R. & Perrizo, W., Unique ergodicity of flows on homogeneous spaces. Israel J. Math., 29 (1978), 276–284.
  • [F1] Furstenberg, H., Strict ergodicity and transformations of the torus. Amer. J. Math., 83 (1961), 573–601.
  • [F2] Furstenberg, H., The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics, 95–115. Springer, 1972.
  • [GE] Greenleaf, P. & Emerson, W. R., Group structure and pointwise ergodic theorem for connected amenable groups. Adv. in Math., 14 (1974), 153–172.
  • [H] Humphreys, J., Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1972.
  • [J] Jacobson, N., Lie Algebras. John Wiley, 1962.
  • [M] Margulis, G. A., Discrete subgroups and ergodic theory. Symposium in honor of A. Selberg, Number theory, trace formulas and discrete groups. Oslo, 1989.
  • [P] Parry, W., Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math., 91 (1969), 757–771.
  • [R1] Ratner, M., Rigidity of horocycle flows. Ann. of Math., 115 (1982), 597–614.
  • [R2] —, Factors of horocycle flows. Ergodic Theory Dynamical Systems, 2 (1982), 465–489.
  • [R3] —, Horocycle flows: joinings and rigidity of products. Ann. of Math., 118 (1983), 277–313.
  • [R4] —, Strict measure rigidity for unipotent subgroups of solvable groups. Invent. Math., 101 (1990), 449–482.
  • [R5] —, Invariant measures for unipotent translations on homogeneous spaces. Proc. Nat. Acad. Sci. U.S.A., 87 (1990), 4309–4311.
  • [Ve] Veech, W., Unique ergodicity of horospherical flows. Amer. J. Math., 99 (1977), 827–859.
  • [W1] Witte, D., Rigidity of some translations on homogeneous spaces. Invent. Math., 81 (1985), 1–27.
  • [W2] —, Zero entropy affine maps on homogeneous spaces. Amer. J. Math., 109 (1987), 927–961.
  • [W3] Witte, D., Measurable quotients of unipotent translations on homogeneous spaces. To appear.