Acta Mathematica

Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables

Arnaud Beauville

Full-text: Open access

Article information

Source
Acta Math., Volume 164 (1990), 211-235.

Dates
Received: 5 January 1989
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890603

Digital Object Identifier
doi:10.1007/BF02392754

Mathematical Reviews number (MathSciNet)
MR1049157

Zentralblatt MATH identifier
0712.58031

Rights
1990 © Almqvist & Wiksell

Citation

Beauville, Arnaud. Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables. Acta Math. 164 (1990), 211--235. doi:10.1007/BF02392754. https://projecteuclid.org/euclid.acta/1485890603


Export citation

Bibliographie

  • Artin, M., On Azumaya algebras and finite-dimensional representations of rings. J. Algebra, 11 (1969), 532–563.
  • Adler, M. & van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras and curves; linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. in Math., 38 (1980), 267–379.
  • Beauville, A., Narasimhan, M. S. & Ramanan, S., Spectral curves and generalised theta divisor. J. Reine Angew. Math., 398 (1989), 169–179.
  • Formanek, E., The center of the ring of 3×3 generic matrices. Linear and Multilinear Algebra, 7 (1979), 203–212.
  • —, The center of the ring of 4×4 generic matrices. J. Algebra, 62 (1980), 304–319.
  • Kempf, G., The equations defining a curve of genus 4. Proc. Amer. Math. Soc., 97 (1986), 214–225.
  • Le Bruyn, L., Some remarks on rational matrix invariants. J. Algebra, 118 (1988), 487–493.
  • Maruyama, M., The equations of plane curves and the moduli space of vector bundles on P2. Algebraic and Topological Theory (to the memory of T. Miyata), 430–466 (1985).
  • Mumford, D. & Fogarty, J., Geometric Invariant Theory. 2nd edition Ergebnisse der Math. 34, Springer Verlag, Berlin-Heidelberg-New York (1982).
  • Mumford, D., Tata lectures on Theta II. Progress in Math. 43. Birkhäuser, Boston-Basel-Stuttgart (1984).
  • Weinstein, A., The local structure of Poisson manifolds. J. Differential Geom., 18 (1983), 523–557.