Acta Mathematica

On Giambelli's theorem on complete correlations

D. Laksov, A. Lascoux, and A. Thorup

Full-text: Open access

Article information

Source
Acta Math. Volume 162 (1989), 143-199.

Dates
Received: 2 March 1988
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890558

Digital Object Identifier
doi:10.1007/BF02392836

Zentralblatt MATH identifier
0695.14023

Rights
1989 © Almqvist & Wiksell

Citation

Laksov, D.; Lascoux, A.; Thorup, A. On Giambelli's theorem on complete correlations. Acta Math. 162 (1989), 143--199. doi:10.1007/BF02392836. https://projecteuclid.org/euclid.acta/1485890558


Export citation

References

  • [DC-P] DeConcini, C. & Procesi, C. Complete symmetric varieties, in Invariant Theory, Proceedings, Montecatini, ed. F. Gheradelli. Springer Lecture Notes, No. 996, 1983, pp. 1–44; II, Preprint, Fall 1983.
  • [F] Fulton, W.Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 2. Springer-Verlag, Berlin, 1984.
  • [G] Giambelli, G. Z. Il probleme della correlazione negli iperspazi. Mem. Reale Inst. Lombardo, 19 (1903), 155–194.
  • [K-L] Kempf, G. & Laksov, D. The determinantal formula of Schubert calculus. Acta Math., 132 (1973), 153–162.
  • [K] Kleiman, S. Chasles's enumerative theory of conics: A historical introduction, in Studies in Algebraic Geometry, MAA Studies in Mathematics, vol. 20, ed. A. Seidenberg, 1980, pp. 117–138.
  • [K-T] Kleiman, S. & Thorup, A. Intersection theory and enumerative geometry. A decade in review (Section 3), in Algebraic Geometry: Bowdoin 1985, ed. S. J. Bloch. Proc. Sympos. Pure Math., vol. 46-2, 1987, pp. 332–338.
  • [L] Laksov, D. Complete linear maps. Ark. Mat., 26 (1988), 231–263.
  • [L1] Laksov, D., Notes on the evolution of complete correlations, in Enumerative and Classical Algebraic Geometry, Proceedings Nice 1981, ed. Le Barz and Hervier. Birkhäuser, Progress in Math. 24, 1982, pp. 107–132.
  • [L2] Laksov, D., Complete quadrics and linear maps, in Algebraic Geometry: Bowdoin 1985, ed. S. J. Bloch. Proc., Sympos Pure Math., vol. 46-2, 1987, pp. 371–387.
  • [Lx] Lascoux, A. Classes de Chern de la variété de drapeaux. C.R. Acad. Sci. Paris, 295 (1982), 393–397.
  • [Lx2] —, Fonctions de Schur et grassmanniennes. C.R. Acad. Sci. Paris, 281 (1975), 813–815; II, 851–854.
  • [M] Macdonald, I. G., Symmetric functions and Hall polynomials. Oxford Univ. Press, Oxford, 1979.
  • [P] Pragacz, P. Enumerative geometry of degeneracy loci. Ann. Ecole Norm. Sup., 3 (1988).
  • [T-K] Thorup, A. & Kleiman, S. Complete bilinear forms, in Algebraic Geometry: Sundance 1986, ed. A. Holme and R. Speiser. Lecture Notes in Mathematics, No. 1311, 1988, pp. 253–320.
  • [S1] Schubert, H. Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen. Math. Ann., 45 (1894), 153–206.
  • [S2] —, Correlative Verwandtschaft in n Dimensionen. Jahresber. Deutsch. Math-Verein, 4 (1894–95), 158–160.
  • [U] Uzava, T. Equivariant compactifications of algebraic symmetric spaces. Preprint, Fall 1985.
  • [V1] Vainsencher, I. Schubert calculus for complete quadrics, in Enumerative and Classical Algebraic Geometry, proceedings Nice 1981, ed. Le Barz and Hervier. Birkhäuser, Progress in Math. 24, 1982, pp. 199–235.
  • [V2] — Complete collineations and blowing up determinantal ideals. Math. Ann., 267 (1984), 417–432.