Acta Mathematica

A new iterative method in Waring's problem

R. C. Vaughan

Full-text: Open access

Article information

Source
Acta Math. Volume 162 (1989), 1-71.

Dates
Received: 24 June 1987
Revised: 11 June 1988
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890556

Digital Object Identifier
doi:10.1007/BF02392834

Mathematical Reviews number (MathSciNet)
MR981199

Zentralblatt MATH identifier
0665.10033

Rights
1989 © Almqvist & Wiksell

Citation

Vaughan, R. C. A new iterative method in Waring's problem. Acta Math. 162 (1989), 1--71. doi:10.1007/BF02392834. https://projecteuclid.org/euclid.acta/1485890556


Export citation

References

  • [BM] Balasubramanian, R. & Mozzochi, C. J., An improved upper bound for G(k) in Waring's problem for relatively small k. Acta Arith., 43 (1984), 283–285.
  • [B1] de Bruijn, N. G., The asymptotic behavivour of a function occurring in the theory of primes. J. Indian Math. Soc. (N.S.), 15 (1951), 25–32.
  • [B2], On the number of positive integers ≤x and free of prime factors > y Nederl. Acad. Wetensch. Proc. Ser. A., 54 (1951), 50–60.
  • [C] Chen, Jing-Run, On Waring's problem for nth powers. Acta Math. Sinica, 8 (1958), 253–257; translated in Chin. Math. Acta, 8 (1966), 849–853.
  • [D1] Davenport, H., On Waring's problem for fourth powers. Ann. of Math., 40 (1939), 731–747.
  • [D2], On sums of positive integral kth powers. Amer. J. Math., 64 (1942), 189–198.
  • [D3] Davenport, H., The collected works of Harold Davenport, vol. III. Ed. B. J. Birch, H., Halberstam & C. A. Rogers, Academic Press, 1977.
  • [D4] Davenport, H.Multiplicative number theory. Springer-Verlag, second edition, 1980.
  • [DE] Davenport, H. & Erdős, P., On sums of positive integral kth powers. Ann. of Math., 40 (1939), 533–536.
  • [DL] Davenport, H. & Lewis, D. J., Homogeneous additive equations. Proc. Roy. Soc. London Ser. A. 274 (1963), 443–460.
  • [E] Estermann, T., Einige Sätze über quadratfreie Zahlen. Math. Ann., 105 (1931), 653–662.
  • [HR] Halberstam, H. & Richert, H.-E., Sieve methods. Academic Press, 1974.
  • [HL] Hardy, G. H. & Littlewood, J. E., Collected papers of G. H. Hardy, including joint papers with J. E. Littlewood and others. Ed. by a committee appointed by the London Mathematical Society, vol. I, Clarendon Press, 1966.
  • [H] Hooley, C., On Waring's problem. Acta Math., 57 (1986), 49–97.
  • [K] Karatsuba, A. A., On the function G(n) in Waring's problem. Izv. Akad. Nauk SSSR, 49 1985), 935–947, 1119.
  • [L] Linnik, Ju. V., On the representation of large numbers as sums of seven cubes. Dokl. Akad. Nauk SSSR, 35 (1942), 162 and Mat. Sb., 12 (1943), 218–224.
  • [T1] Thanigasalam, K., On Waring's problem. Acta Arith., 38 (1980), 141–155.
  • [T2], Some new estimates for G(k) in Waring's problem. Acta Arith. 42 (1982), 73–78.
  • [T3], Improvement on Davenport's iterative method and new results in additive number theory, I & II, proof that G(5)≤22. Acta Arith., 46 (1985), 1–31 and 91–112.
  • [Va1] Vaughan, R. C., Homogeneous additive equations and Waring's problem. Acta Arith., 33 (1977), 231–253.
  • [Va2] Vaughan, R. C., The Hardy-Littlewood method. Cambridge University Press, 1981.
  • [Va3], Sums of three positive cubes, Bull. London Math. Soc, 17 (1985), 17–20.
  • [Va4], On Waring's problem for smaller exponents. Proc. London Math. Soc. (3), 52 (1986), 445–63.
  • [Va5], On Waring's problem for sixth powers. J. London Math. Soc. (2), 33 (1986), 227–236.
  • [Va6], On Waring's problem for cubes. J. Reine Angew. Math. 365 (1986), 122–170.
  • [Va7], On Waring's problem for smaller exponents II. Mathematika, 33 (1986), 6–22.
  • [Vi1] Vinogradov, I. M., The method of trigonometrical sums in the theory of numbers. Trudy Mat. Inst. Steklov, 23 (1947), 1–109.
  • [Vi2], On an upper bound for G(n). Izv. Akad. Nauk SSSR, 23 (1959), 637–642.
  • [Vi3] Vinogradov, I. M., Selected works. Springer-Verlag.
  • [W] Watson, G. L., A proof of the seven cube theorem. J. London Math. Soc. 26 (1951), 153–156.