Acta Mathematica

On the bass note of a Schottky group

Peter G. Doyle

Full-text: Open access

Article information

Source
Acta Math. Volume 160 (1988), 249-284.

Dates
Received: 3 March 1986
Revised: 8 July 1987
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890521

Digital Object Identifier
doi:10.1007/BF02392277

Mathematical Reviews number (MathSciNet)
MR945013

Zentralblatt MATH identifier
0649.30036

Rights
1988 © Almqvist & Wiksell

Citation

Doyle, Peter G. On the bass note of a Schottky group. Acta Math. 160 (1988), 249--284. doi:10.1007/BF02392277. https://projecteuclid.org/euclid.acta/1485890521


Export citation

References

  • Akaza, T., Poincaré theta-series and singular sets of Schottky groups. Nagoya Math. J., 24 (1964), 43–65.
  • — (3/2)-dimensional measure of singular sets of some Kleinian groups, J. Math. Soc. Japan, 24 (1972), 448–464.
  • Brooks, R., The spectral geometry of the Apollonian packing. Comm. Pure Appl. Math., 38 (1985), 357–366.
  • — On the deformation theory of classical Schottky groups. Duke Math. J., 52 (1985), 1009–1024.
  • Burnside, W., On a class of automorphic functions. Proc. London Math. Soc., 23 (1891), 49–88.
  • Doyle, P. G. & Snell, J. L., Random walks and electric networks. MAA Carus Monographs, 1984.
  • Holland, C. J., A minimum principle for the principal eigenvalue for second-order linear elliptic equations with natural boundary conditions. Comm. Pure. Appl. Math., 31 (1978), 509–519.
  • Maxwell, J. C., Treatise on Electricity and Magnetism. 3d ed., Clarendon, Oxford, 1891.
  • Myrberg, P. J., Zur Theorie der Konvergenz der Poincaréschen Reihen. Ann. Acad. Sci. Fenn. Ser. A, 9 (1916), 1–75.
  • — Zur Theorie der Konvergenz der Poincaréschen Reihen (zweite Abh.). Ann. Acad. Sci. Fenn. Ser. A, 11 (1917), 1–29.
  • Patterson, S. J., The limit set of a Fuchsian group. Acta Math., 136 (1976), 241–273.
  • — Some examples of Fuchsian groups. Proc. London Math. Soc., 39 (1979), 276–298.
  • Phillips, R. & Sarnak, P., The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups. Acta Math., 155 (1985), 173–241.
  • Rayleigh, J. W. S., On the theory of resonance, in Collected scientific papers, vol. 1, pp. 33–75, Cambridge Univ. Press, Cambridge, 1899.
  • Sarnak, P., Domains in hyperbolic space and limit sets of Kleinian groups, in Differential Equations, ed. I. W. Knowles and R. T. Lewis, pp. 485–500. North-Holland, Amsterdam, 1984.
  • Schottky, F., Über eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Argumentes unverändert bleibt. Crelle’s J., 101 (1887), 227–272.
  • Sullivan, D., Discrete conformal groups and measurable dynamics. Bull. Amer. Math. Soc., 6 (1982), 57–73.
  • — Entropy, Hausdorff measures old and new, and the limit sets of geometrically finite Kleinian groups. Acta Math., 153 (1983), 259–277.