Acta Mathematica

On the classification of G-spheres I: equivariant transversality

I. Madsen and M. Rothenberg

Full-text: Open access

Article information

Source
Acta Math., Volume 160 (1988), 65-104.

Dates
Received: 27 December 1985
Revised: 4 February 1987
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890517

Digital Object Identifier
doi:10.1007/BF02392273

Mathematical Reviews number (MathSciNet)
MR926525

Zentralblatt MATH identifier
0656.57024

Rights
1988 © Almqvist & Wiksell

Citation

Madsen, I.; Rothenberg, M. On the classification of G -spheres I: equivariant transversality. Acta Math. 160 (1988), 65--104. doi:10.1007/BF02392273. https://projecteuclid.org/euclid.acta/1485890517


Export citation

References

  • Anderson, D. & Hsiang, W. C., The functors K−i and pseudo isotopies of polyhedra. Ann. of Math., 105 (1977), 201–223.
  • Atiyah, M. F., K-theory, Benjamin, New York (1967).
  • Atiyah, M. F. & Singer, I. M., The index of elliptic operators I, III. Ann. of Math., 87 (1968), 484–530 and 546–604.
  • Atiyah, M. F. & Segal, G. B., The index of elliptic operators II. Ann. of Math., 87 (1968), 531–545.
  • Bredon, G. E., Equivariant cohomology theories. Springer Lecture Notes. in Math., vol. 34 (1967).
  • Bass, H., The Dirichlets unit theorem and Whitehead groups of finite groups. Topology, 4 (1966), 391–410.
  • Cappell, S. E. & Shaneson, J. L., Non-linear similarity. Ann. of Math., 113 (1981), 315–355.
  • Carter, D., Lower K-theory of finite groups. Comm. Algebra, 8 (1980), 1927–1937.
  • Elmendorf, A. D., Systems of fixed point sets. Trans. Amer. Math. Soc., 277 (1983), 275–284.
  • Hudson, J. F. P., Piecewise linear topology, Benjamin, New York 1969.
  • Haefliger, A. & Poenaru, V., La classification des immersions conbinatories. Publ. Math. I. H. E. S., 23 (1964), 75–91.
  • Hsiang, W. C. & Pardon, W., When are topologically equivalent orthogonal representations linearly equivalent. Invent. Math., 68 (1982), 275–316.
  • Lashof, R., Equivariant isotopies and submersions. Illinois J. Math., 29 (1985), 11–24.
  • Lashof, R. & Rothenberg, M., G-smoothing theory. Proc. Symp. Pure Math., 32 (1978), 211–266. AMS, Providence.
  • May, J. P., Simplicial objects in algebraic topology Van Nostrand, Princeton (1967).
  • Madsen, I., Geometric equivariant bordism and K-theory. Topology, 25 (1986), 217–227.
  • Madsen, I. & Milgram, R. J., The classifying spaces for surgery and cobordism of manifolds. Ann of Math. Stud., 92. Princeton University Press (1979).
  • Madsen, I. & Rothenberg, M., On the classification of G-spheres (an outline). Contemp. Math., 19 (1983), 193–225.
  • Madsen, I. & Rothenberg, M., On the classification of G-spheres II: PL automorphism groups. Aarhus University, Preprint 1985.
  • Madsen, I. & Rothenberg, M., On the classification of G-spheres III: Top automorphism groups. Aarhus University, Preprint 1985.
  • Madsen, I. & Svensson, J.-A., Induction in unstable equivariant homotopy theory and noninvariance of Whitehead torsion. Comtemp. Math., 37, 1985.
  • Rothenberg, M., Torsion invariants and finite transformation groups. Proc. Symp. Pure Math., 33 (1978), 267–312. AMS, Providence.
  • Rourke, C. & Sanderson, B., α-sets I, II. Quart. J. Math. Oxford, 22 (1971), 321–338 and 465–485.
  • Svensson, J.-A., Equivariant lower K-theory. To appear in Math. Scand. (1987).
  • Petrie, T., Pseudo equivalences of G-manifolds. Proc. Symp. Pure Math., 32 (1978), 169–210.
  • Siebenmann, L., The obstruction to finding a boundary for an open manifold of dimension ≥5. Thesis, Princeton 1965.
  • Stong, R., Notes on cobordism theory. Princeton University Press, 1968.
  • Wassermann, A., Equivariant differential topology. Topology, 8 (1969), 127–150.
  • Browder, W., Levine, J. & Livesay, G. R., Finding a boundary for an open manifold. Amer. J. Math. 87 (1965), 1017–1028.