Acta Mathematica

Primes in arithmetic progressions to large moduli

E. Bombieri, J. B. Friedlander, and H. Iwaniec

Full-text: Open access

Note

Supported in part by NSF grant MCS-8108814(A02).

Note

Supported in part by NSERC grant A5123.

Article information

Source
Acta Math., Volume 156 (1986), 203-251.

Dates
Received: 24 April 1984
Revised: 14 August 1984
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890416

Digital Object Identifier
doi:10.1007/BF02399204

Mathematical Reviews number (MathSciNet)
MR834613

Zentralblatt MATH identifier
0588.10042

Rights
1986 © Almqvist & Wiksell

Citation

Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. Acta Math. 156 (1986), 203--251. doi:10.1007/BF02399204. https://projecteuclid.org/euclid.acta/1485890416


Export citation

References

  • Bombieri, E., On the large sieve. Mathematika, 12 (1965), 201–225.
  • Deshouillers J.-M. & Ivaniec, H., Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math., 70 (1982), 219–288.
  • Elliott, P. D. T. A. & Halberstam, H., A conjecture in prime number theory. Symp. Math., 4 (INDAM Rome, 1968–69), 59–72.
  • Fouvry, E., Répartition des suites dans les progressions arithmétiques. Acta Arith. 41 (1982), 359–382.
  • —, Autour du théorème de Bombieri-Vinogradov. Acta Math., 152 (1984), 219–244.
  • Fouvry, E. & Iwaniec, H., On a theorem of Bombieri-Vinogradov type. Mathematika, 27 (1980), 135–172.
  • — Primes in arithmetic progressions. Acta Arith., 42 (1983), 197–218.
  • Friedlander, J. & Iwaniec, H., On Bombieri's asymptotic sieve. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 5 (1978), 719–756.
  • — Incomplete Kloosterman sums and a divisor problem. Ann. Math., 121 (1985), 319–350.
  • Friedlander, J. The divisor problem for arithmetic progressions. To appear in Acta Arith.
  • Gallagher, P. X., Bombieri's mean value theorem. Mathematika, 14 (1967), 14–20.
  • Heath-Brown, D. R., Prime numbers in short intervals and a generalized Vaughan identity. Canad. J. Math., 34 (1982), 1365–1377.
  • Hooley, C., On the Barban-Davenport-Halberstam Theorem III. J. London Math. Soc. (2), 10 (1975), 249–256.
  • Iwaniec, H., The half dimensional sieve. Acta Arith., 29 (1976), 67–95.
  • —, A new form of the error term in the linear sieve. Acta Arith., 37 (1980), 307–320.
  • Linnik, Ju. V., All large numbers are sums of a prime and two squares (a problem of Hardy and Littlewood), II. Mat. Sb. 53 (1961), 3–38; Amer. Math. Soc. Transl., 37 (1964), 197–240.
  • —, The dispersion method in binary additive problems. Amer. Math. Soc., Providence, 1963.
  • Motohashi, Y., An induction principle for the generalization of Bombieri's Prime Number Theorem. Proc. Japan Acad., 52 (1976), 273–275.
  • Shiu, P., A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math., 313 (1980), 161–170.
  • Vaughan, R. C., An elementary method in prime number theory. Acta Arith., 37 (1980), 111–115.
  • Vinogradov, A. I., On the density hypothesis for Dirichlet L-functions. Izv. Akad. Nauk SSSR Ser. Math., 29 (1965), 903–934; correction ibid. Izv. Akad. Nauk SSSR Ser. Math., 30 (1966), 719–720.
  • Wolke, D., Über mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen I. Math. Ann., 202 (1973), 1–25; II ibid. Math. Ann., 204 (1973), 145–153.