Acta Mathematica

The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian

L. Caffarelli, L. Nirenberg, and J. Spruck

Full-text: Open access

Dedication

Dedicated to Lars Gårding on his 65th birthday

Article information

Source
Acta Math. Volume 155 (1985), 261-301.

Dates
Received: 1 July 1984
Revised: 9 October 1984
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890403

Digital Object Identifier
doi:10.1007/BF02392544

Mathematical Reviews number (MathSciNet)
MR806416

Zentralblatt MATH identifier
0654.35031

Rights
1985 © Almqvist & Wiksell

Citation

Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985), 261--301. doi:10.1007/BF02392544. https://projecteuclid.org/euclid.acta/1485890403


Export citation

References

  • Caffarelli, L., Nirenberg, L. & Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations, I: Monge-Ampère equations. Comm. Pure Appl. Math. 37 (1984), 369–402.
  • Caffarelli, L., Kohn, J. J., Nirenberg, L. & Spruck, J.. The Dirichlet problem for nonlinear second order elliptic equations, II: Complex Monge-Ampère, and uniformly elliptic equations. Comm. Pure Appl. Math., 38 (1985), 209–252.
  • Gårding, L., An inequality for hyperbolic polynomials. J. Math. Mech., 8 (1959), 957–965.
  • Harvey, R. & Lawson jr, H. B., Calibrated geometries. Acta Math., 148 (1982), 47–157.
  • Ivočkina, N. M., The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge-Ampère type. Mat. Sb. (N.S.), 112 (1980), 193–206 (Russian); Math. USSR-Sb., 40 (1981), 179–192 (English).
  • Krylov, N. V., Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR, 47 (1983), 75–108.
  • Marcus, M., An eigenvalue inequality for the product of normal matrices. Amer. Math. Monthly, 63 (1956), 173–174.