Acta Mathematica

Spectral synthesis in sobolev spaces, and uniqueness of solutions of the Dirichlet problem

Lars Inge Hedberg

Full-text: Open access

Note

Supported by the Swedish Natural Science Research Council.

Article information

Source
Acta Math., Volume 147 (1981), 237-264.

Dates
Received: 22 December 1980
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890135

Digital Object Identifier
doi:10.1007/BF02392874

Mathematical Reviews number (MathSciNet)
MR639040

Zentralblatt MATH identifier
0504.35018

Rights
1981 © Almqvist & Wiksell

Citation

Hedberg, Lars Inge. Spectral synthesis in sobolev spaces, and uniqueness of solutions of the Dirichlet problem. Acta Math. 147 (1981), 237--264. doi:10.1007/BF02392874. https://projecteuclid.org/euclid.acta/1485890135


Export citation

References

  • Adams, D. R., Maximal operators and capacity. Proc. Amer. Math. Soc., 34 (1972), 152–156.
  • —, On the existence of strong type estimates in Rn. Ark. Mat., 14 (1976), 125–140.
  • Adams, D. R. & Meyers, N. G., Thinness and Wiener criteria for non-linear potentials. Indiana Univ. Math. J., 22 (1972), 169–197.
  • Adams, D. R. & Polking, J. C., The equivalence of two definitions of capacity. Proc. Amer. Math. Soc., 37 (1973), 529–534.
  • Babuška, I., Stability of the domain with respect to the fundamental problems in the theory of partial differential equations, mainly in connection with the theory of elasticity, I–II (in Russian). Czechoslovak Math. J., 11 (86) (1961), 76–105 and 165–203.
  • Bagby, T., Quasi topologies and rational approximation. J. Funct. Anal., 10 (1972), 259–268.
  • Bagby, T., Approximation in the mean by solutions of elliptic equations. Trans. Amer. Math. Soc.
  • Beurling, A. & Deny, J., Dirichlet spaces. Proc. Nat. Acad. Sci. USA, 45 (1959), 208–215.
  • Brézis, H. & Browder, F. E., Some properties of higher order Sobolev spaces. J. Math. Pures Appl.
  • Calderón, A. P., Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math. 4 (1961), 33–49.
  • Deny, J., Les potentiels d'énergie finie. Acta Math., 82 (1950), 107–183.
  • —, Théorie de la capacité dans les espaces fonctionnels, Séminaire de Théorie du Potentiel. 9 (1964–65), no. 1.
  • —, Méthodes hilbertiennes en théorie du potentiel, in Potential Theory (C.I.M.E., I Ciclo, Stresa 1969), 121–201. Ed. Cremonese, Rome, 1970.
  • Deny, J. & Lions, J. L., Les espaces du type de Beppo Levi. Ann. Inst. Fourier (Grenoble) 5 (1953–54), 305–370.
  • Fuglede, B., Applications du théorème minimax à l'étude de diverses capacités. C.R. Acad. Sci. Paris, Sér. A, 266 (1968), 921–923.
  • —, The quasi topology associated with a countably additive set function. Ann. Inst. Fourier (Grenoble), 21: 1 (1971), 123–169.
  • Havin, V. P., Approximation in the mean by analytic functions. Dokl. Akad. Nauk SSSR, 178 (1968), 1025–1028.
  • Hedberg, L. I., Non-linear potentials and approximation in the mean by analytic functions. Math. Z., 129 (1972), 299–319.
  • —, On certain convolution inequalities. Proc. Amer. Math. Soc., 36 (1972), 505–510.
  • —, Approximation in the mean by solutions of elliptic equations. Duke Math. J., 40 (1973), 9–16.
  • —, Two approximation problems in function spaces. Ark. Mat., 16 (1978), 51–81.
  • Hedberg, L. I., Spectral synthesis and stability in Sobolev spaces, in Euclidean harmonic analysis (Proc., Univ. of Maryland 1979). Lecture Notes in Mathematics 779, 73–103. Springer Verlag, 1980.
  • Hedberg, L. I., On the Dirichlet problem for higher order equations. Proc. Symp. Pure Math. (Zygmund volume).
  • Hestennes M. R., Extension of the range of a differentiable function. Duke Math. J., 8 (1941), 183–192.
  • Katznelson, Y., An introduction to harmonic analysis. Wiley, 1968.
  • Kolsrud, T., A uniqueness theorem for higher order elliptic partial differential equations. Stockholm Univ. Math. Dept. Report 1981:9.
  • Maz'ja, V. G., On (p, l)-capacity, imbedding theorems, and the spectrum of a self-adjoint elliptic operator. Izv. Akad. Nauk SSSR, Ser. Mat., 27, (1973), 356–385.
  • —, On removable singularities for bounded solutions of quasilinear elliptic equations of arbitrary order. Zap. LOMI, 27 (1972), 116–130.
  • —, Einbettungssätze für Sobolewsche Räume, Teil 1. Teubner, Leipzig, 1979.
  • Maz'ja, V. G. & Havin, V. P., Non-linear potential theory. Uspehi Mat. Nauk, 27: 6 (1972), 67–138.
  • —, Application of (p, l)-capacity to some problems in the theory of exceptional sets. Mat. Sb., 90 (132) (1973), 558–591.
  • Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand., 26 (1970), 255–292.
  • —, Continuity properties of potentials. Duke Math. J., 42 (1975), 157–166.
  • —, Integral inequalities of Poincaré and Wirtinger type. Arch. Rational Mech. Anal., 68 (1978), 113–120.
  • Polking, J. C., Approximation in Lp by solutions of elliptic partial differential equations. Amer. J. Math., 94 (1972), 1231–1244.
  • Rešetnjak, Ju. G., On the concept of capacity in the theory of functions with generalized derivatives. Sibirsk. Mat. Ž., 10 (1969), 1109–1138.
  • Schulze, B.-W. & Wildenhain, G., Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung. Akademie-Verlag, Berlin, 1977.
  • Sjödin, T., Bessel potentials and extension of continuous functions on compact sets. Ark. Mat., 13 (1975), 263–271.
  • Sobolev, S. L. On a boundary value problem for polyharmonic equations, Mat. Sb. (N.S.), 2 (44) (1937), 467–499. (English translation: Amer. Math. Soc. Transl., (2) 33 (1963), 1–40).
  • —, Applications of functional analysis in mathematical physics. Izd. LGU, Leningrad, 1950 (English translation, Amer. Math. Soc. Providence, R.I., 1963).
  • Stein, E. M., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N.J., 1970.
  • Wallin, H., Continuous functions and potential theory. Ark. Mat. 5 (1963), 55–84.
  • Webb, J. R. L., Boundary value problems for strongly nonlinear elliptic equations. J. London Math. Soc. (2), 21 (1980), 123–132.