Acta Mathematica

B(H) does not have the approximation propertydoes not have the approximation property

Andrzej Szankowski

Full-text: Open access


Supported in part by the Danish Natural Sciences Research Council.

Article information

Acta Math., Volume 147 (1981), 89-108.

Received: 1 April 1981
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1981 © Almqvist & Wiksell


Szankowski, Andrzej. B ( H ) does not have the approximation propertydoes not have the approximation property. Acta Math. 147 (1981), 89--108. doi:10.1007/BF02392870.

Export citation


  • Choi, M. & Effros, E., Nuclear C*-algebras and the approximation property. Amer. J. Math., 100 (1978), 61–79.
  • Enflo, P., A counterexample to the approximation property in Banach spaces. Acta Math., 130 (1973), 309–317.
  • Grothendieck, A., Produits tensoriels topologiques et espaces nuclearies. Memoirs Amer. Math. Soc., 16 (1955).
  • Haagerup, U., An example of a non-nuclearC*-algebra, which has the metric approximation property. Invent. Math., 50 (1979), 279–293.
  • Lance, C., On nuclear C*-algebras, J. Functional Analysis, 12 (1973), 157–176.
  • Lindenstrauss, J. & Tzafriri, L., Classical Banach Spaces, Vol. 1. Springer-Verlag 1977.
  • Szankowski, A., The space of all bounded operators on Hilbert space does not have the approximation property, exposé, XIV–XV. Seminaire d'analyse fonctionnelle, 1978–79, Ecole Polytechnique.
  • Takesaki, M., On the cross-norm of the direct product of C*-algebras. Tohoku Math. J., 16 (1964), 111–122.
  • Wasserman, S., On tensor products of certain group C*-algebras. J. Functional Analysis, 23 (1976), 239–254.