Acta Mathematica

Minimal triangulations on orientable surfaces

M. Jungerman and G. Ringel

Full-text: Open access

Note

We thank NSF for supporting this research. And we also thank Doris Heinsohn for drawing the figures and David Pengelley for carefully checking the manuscript.

Article information

Source
Acta Math., Volume 145 (1980), 121-154.

Dates
Received: 11 April 1980
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890083

Digital Object Identifier
doi:10.1007/BF02414187

Mathematical Reviews number (MathSciNet)
MR586595

Zentralblatt MATH identifier
0451.57005

Rights
1980 © Almqvist & Wiksell

Citation

Jungerman, M.; Ringel, G. Minimal triangulations on orientable surfaces. Acta Math. 145 (1980), 121--154. doi:10.1007/BF02414187. https://projecteuclid.org/euclid.acta/1485890083


Export citation

References

  • Gustin, W., Orientable embedding of Cayley graphs. Bull. Amer. Math. Soc., 69 (1963), 272–275.
  • Guy, R. K. & Ringel, G., Triangular embedding of Kn−K6J. Combinatorial Theory, Ser. B, 21 (1976), 140–145.
  • Heawood, P. J., Map colour theorem. Quart. J. Math., 24 (1890), 332–338.
  • Heffter, L., Über das Problem der Nachbargebiete. Math. Ann., 38 (1891), 477–508.
  • Huneke, J. P., A minimum-vertex triangulation. To appear.
  • Jungerman, M., Orientable triangular embeddings of K15K3 and K13K3. J. Combinatorial Theory, Ser. B., 16 (1974), 293.
  • —, The genus of Kn-K2J. Combinatorial Theory, Ser. B, 18 (1975), 53–58.
  • Jungerman, M. & Ringel, G., The genus of the n-octahedron: Regular cases. J. Graph Theory, 2 (1978), 69–75.
  • Ringel, G., Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann. Math. Ann., 130 (1955), 317–326.
  • —, Über das Problem der Nachbargebiete auf orientierbaren Flächen. Abh. Math. Sem. Univ. Hamburg, 25 (1961), 105–127.
  • Ringel, G.Map Color Theorem Springer-Verlag, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 209, 1974.
  • Ringel, G. & Youngs, J. W. T., Solution of the Heawood map-coloring problem Case 11. J. Combinatorial Theory, 7 (1969), 71–93.
  • —, Lösung des Problems der Nachbargebiete auf orientierbaren Flächen. Arch. Math. (Basel), 20 (1969), 190–201.
  • Terry, C. M., Welch, L. R. & Youngs, J. W. T., The genus of K128. J. Combinatorial Theory, 2 (1967), 43–60.
  • Youngs, J. W. T., Solution of the Heawood map-coloring problem-Cases 3, 5, 6 and 9. J. Combinatorial Theory, 8 (1970), 175–219.
  • —, The Heawood map-coloring problem-Cases 1, 7, and 10. J. Combinatorial Theory, 8 (1970), 220–231.