Acta Mathematica

Lefschetz-riemann-roch for singular varieties

Paul Baum, William Fulton, and George Quart

Full-text: Open access

Note

Research partially supported by the National Science Foundation

Article information

Source
Acta Math., Volume 143 (1979), 193-211.

Dates
Received: 23 August 1978
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890037

Digital Object Identifier
doi:10.1007/BF02392092

Mathematical Reviews number (MathSciNet)
MR549774

Zentralblatt MATH identifier
0454.14009

Rights
1979 © Almqvist & Wiksell

Citation

Baum, Paul; Fulton, William; Quart, George. Lefschetz-riemann-roch for singular varieties. Acta Math. 143 (1979), 193--211. doi:10.1007/BF02392092. https://projecteuclid.org/euclid.acta/1485890037


Export citation

References

  • Atiyah, M. F., Elliptic operators and compact groups. Springer Lecture Notes 401 (1974).
  • Atiyah, M. F. & Segal, G. B., The index of elliptic operators. II. Ann. of Math., 87 (1968), 531–545.
  • Paum, P. Fixed-point formula for singular varieties. To appear.
  • Baum, P., Fulton, W. & MacPherson, R., Riemann-Roch for singular varieties. Publ. Math. 1HES, 45 (1975), 101–167.
  • Baum, P. Riemann-Roch and topological K-theory for singular varieties. Preceding article.
  • Berthelot, P., Grothendieok, A., Illusie, L. et al., Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois Marie 1966/67. SGA 6, Springer Lecture Notes 225 (1971).
  • Donovan, P., The Lefschetz-Riemann-Roch formula. Bull. Soc. Math. France, 97 (1969), 257–273.
  • Fulton, W., A fixed point formula for varieties over finite fields. Math. Scand., 42 (1978), 189–196.
  • Fulton, W. & MacPherson, R., Intersecting cycles on an algebraic variety. Real and Complex Singularities, Oslo, 1976. P. Holm, editor, Sijthoff & Noordhoff, (1978), 179–197.
  • Nielsen, H. A., Diagonally linearized coherent sheaves. Bull. Soc. Math. France, 102 (1974), 85–97.
  • Quart, G., Localization theorem in K-theory for singular varieties. Following article.
  • Quillen, D., Higher algebraic K-theory I. Battelle Institute Conference on Algebraic K-theory I (1972) Springer Lecture Notes, 341 (1973), 85–147.
  • Serre, J.-P., Algèbre locale, multiplicités. Springer Lecture Notes, 11 (1965).
  • Représentations linéaires des groupes finis. Hermann, Paris (1971).
  • Toledo D. & Tong, Y. L. L., The holomorphic Lefschetz formula. Bull. Amer. Math. Soc., 81 (1975), 1133–1135.
  • Zagier, D. B., Equivariant Pontrjagin classes and applications to orbit spaces. Springer Lecture Notes, 290 (1972).