Acta Mathematica

An elementary method in the study of nonnegative curvature

H. Wu

Full-text: Open access

Note

Work supported partially by the National Science Foundation.

Article information

Source
Acta Math. Volume 142 (1979), 57-78.

Dates
Received: 24 May 1977
Revised: 29 May 1978
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485890015

Digital Object Identifier
doi:10.1007/BF02395057

Zentralblatt MATH identifier
0403.53022

Rights
1979 © Almqvist & Wiksell

Citation

Wu, H. An elementary method in the study of nonnegative curvature. Acta Math. 142 (1979), 57--78. doi:10.1007/BF02395057. https://projecteuclid.org/euclid.acta/1485890015.


Export citation

Bibliography

  • Ahlfors, L. V., An extension of Schwarz's lemma. Trans. Amer. Math. Soc., 43 (1938), 359–364.
  • Andreotti, A. & Grauert, H., Theorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90 (1962), 193–259.
  • Calabi, E., An extension of E. Hopf's maximum principle with an application to Riemannian geometry. Duke Math. J., 25 (1957), 45–56.
  • Cheeger, J. & Gromoll, D., The splitting theorem for manifolds of nonnegative curvature. J. Diff. Geom., 6 (1971), 119–128.
  • —, On the structure of complete manifolds of nonnegative curvature. Ann. of Math., 96 (1972), 413–443.
  • Eberlein, P. & O'Neill, B., Visibility manifolds, Pacific J. Math., 46 (1973), 45–109.
  • Elencwajg, G., Pseudoconvexité locale dans les variétés Kähleriennes. Annales de L'Institute Fourier, 25 (1976), 295–314.
  • Feller, W., Über die Lösungen der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Math. Ann., 102 (1930), 641–653.
  • Greene, R. E. & Wu, H., On the subharmonicity and plurisubharmonicity of geodesically convex functions, Indiana Univ. Math. J., 22 (1973), 641–653.
  • —, Integrals of subharmonic functions on manifolds of nonnegative curvature. Inventiones Math., 27 (1974), 265–298.
  • —, Approximation theorems, C convex exhaustions and manifolds of positive curvature. Bulletin Amer. Math. Soc., 81 (1975), 101–104.
  • —, Analysis on noncompact Kähler manifolds. In Several Complex Variables, Proc. Symposia Pure Math. Volume 30, Part 2, Amer. Math. Soc. Publications, Providence, R.I. (1977), 69–100.
  • —, C convex functions and manifolds of positive curvature. Acta Math., 137 (1976). 209–245.
  • —, On Käler manifolds of positive bisectional curvature and a theorem of Hartogs. Abh. Math. Sem. Univ. Hamburg, 47 (1978), 171–185.
  • Greene, R. E. & Wu, H., C approximations of convex, subharmonic and plurisubharmonic functions. Ann. Sci. École Norm. Sup., to appear.
  • Narasimhan, R., The Levi problem for complex spaces II. Math. Ann., 146 (1962), 195–216.
  • Poor, W. A., Some results on nonnegatively curved manifolds. J. Diff. Geom., 9 (1974), 583–600.
  • Richeberg, R., Stetige streng pseudoconvexe Funktionen. Math. Ann., 175 (1968), 257–286.
  • Suzuki, O., Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature. Publ. RIMS, Kyoto Univ. 12 (1976), 191–214.
  • Takeuchi, A., Domaines pseudoconvexes sur les variétés Kähleriennes. J. Math. Kyoto Univ., 6-3 (1967), 323–357.
  • Wu, H., On the volume of a noncompact manifold. Ark. Mat., to appear.
  • Yau, S. T., On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl., 57 (1978), 191–201.