Acta Mathematica

A Hölder estimate for quasiconformal maps between surfaces in Euclidean space

Leon Simon

Full-text: Open access

Note

Research supported by N.S.F grant MPS 72-04967A02 an a Sloan Fellow ship.

Article information

Source
Acta Math. Volume 139 (1977), 19-51.

Dates
Received: 24 August 1976
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889964

Digital Object Identifier
doi:10.1007/BF02392233

Mathematical Reviews number (MathSciNet)
MR452746

Zentralblatt MATH identifier
0402.30022

Rights
1977 © Almqvist & Wiksell

Citation

Simon, Leon. A Hölder estimate for quasiconformal maps between surfaces in Euclidean space. Acta Math. 139 (1977), 19--51. doi:10.1007/BF02392233. https://projecteuclid.org/euclid.acta/1485889964


Export citation

References

  • Jenkins, H., On 2-dimensional variational problems in parametric form. Arch. Rat. Mech. Anal., 8 (1961), 181–206.
  • Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 43 (1938), 126–166.
  • Nirenberg, L., On nonlinear elliptic partial differential equations and Hölder continuity. Comm. Pure Appl. Math., 6 (1953), 103–156.
  • Osserman, R., Minimal varieties. Bull. Amer. Math. Soc., 75 (1969), 1092–1120.
  • —, On the Gauss curvature of minimal surfaces. Trans. Amer. Math. Soc., 96 (1960), 115–128.
  • —, On Bers' theorem on isolated singularities. Indiana Univ. Math. J., 23 (1973), 337–342.
  • Simon, L., Equations of mean curvature type in 2 independent variables. Pacific J. Math. (1977).
  • —, Global Hölder estimates for a class of divergent—form elliptic equation. Arch. Rat. Mech. Anal., 56 (1974), 253–272.
  • Spanier, E.Algebraic Topology. McGraw-Hill.
  • Spruck, J., Gauss curvature estimates for surfaces of constant mean curvature. Comm. Pure Appl. Math., 27 (1974), 547–557.
  • Trudinger, N., A sharp inequality for subharmonic functions on two dimensional manifolds.