Acta Mathematica

Stochastic integrals in the plane

R. Cairoli and John B. Walsh

Full-text: Open access

Note

This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Source
Acta Math., Volume 134 (1975), 111-183.

Dates
Received: 18 March 1974
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889844

Digital Object Identifier
doi:10.1007/BF02392100

Mathematical Reviews number (MathSciNet)
MR420845

Zentralblatt MATH identifier
0334.60026

Rights
1975 © Almqvist & Wiksell

Citation

Cairoli, R.; Walsh, John B. Stochastic integrals in the plane. Acta Math. 134 (1975), 111--183. doi:10.1007/BF02392100. https://projecteuclid.org/euclid.acta/1485889844


Export citation

References

  • Cairoli, R., martingales à deux paramètres de carré intégrable. C. R. Acad. Sc. Paris Sér A-B, 272 (1971), 1731–1734.
  • —, Une inégalité pour martingales à indices multiples et ses applications. Séminaire de probabilités IV, Université de Strasbourg, Springer, Berlin, 1970, 1–27.
  • Doléans, C., Intégrales stochastiques dépendant d'un paramètre. Publ. Inst. Statist. Univ. Paris, 16 (1967), 23–34.
  • Doob, J. L., Stochastic processes. New York, 1953.
  • Getoor, R. K. & Sharpe, M. J., Conformal martingales. Invent. Math., 6 (1972), 271–308.
  • Hudson, W. N., Continuity of sample functions of biadditive processes. Pacific J. Math., 42 (1972), 343–358.
  • Ito, K., Lectures on stochastic processes. Tata Institute of Fundamental Research, Bombay, 1961.
  • —, Multiple Wiener integral. J. Math. Soc. Japan, 3 (1951), 157–169.
  • Jessen, B., Marcinkiewicz, J. & Zygmund, A., Note on the differentiability of multiple integrals. Fund. Math., 25 (1935), 217–234.
  • Kunita, H. & Watanabe, S., On square integrable martingales. Nagoya Math. J., 30 (1967), 209–245.
  • McKean, H. P., Stochastic integrals. Academic Press, New York, 1969.
  • Metraux, C., Les inégalités de Burkholder dans le cas de martingales à deux paramètres. In preparation.
  • Meyer, P. A., Intégrales stochastiques I. Séminaire de probabilités I, Université de Strasbourg, Springer, Berlin, 1967, 72–94.
  • Orey, S. & Pruitt, W., Sample functions of the N-parameter Wiener process. Ann. Probability, 1 (1973), 138–163.
  • Park, W. J., A multiparameter Gaussian process. Ann. Math. Stat., 41 (1970), 1582–1595.
  • Rao, K. M., On decomposition theorems of Meyer. Math. Scand., 24 (1969), 66–78.
  • Saks, S., Remark on the differentiability of the Lebesgue indefinite integral. Fund. Math., 22 (1934), 257–261.
  • Wong, E. & Zakai, M., Martingales and stochastic integrals for processes with a multidimensional parameter. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 29 (1974), 109–122.
  • Yeh, J., Wiener measure in a space of functions of two variables. Trans. Amer. Math. Soc., 95 (1960), 443–450.
  • Zimmerman, G. J., Some sample function properties of the two-parameter Gaussian process. Ann. Math. Stat., 43 (1972), 1235–1246.