Acta Mathematica

Operators of principal type with interior boundary conditions

Johannes Sjöstrand

Full-text: Open access

Note

This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Source
Acta Math., Volume 130 (1973), 1-51.

Dates
Received: 25 March 1972
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889765

Digital Object Identifier
doi:10.1007/BF02392261

Mathematical Reviews number (MathSciNet)
MR436226

Zentralblatt MATH identifier
0253.35076

Rights
1973 © Almqvist & Wiksell Informationsindustri AB

Citation

Sjöstrand, Johannes. Operators of principal type with interior boundary conditions. Acta Math. 130 (1973), 1--51. doi:10.1007/BF02392261. https://projecteuclid.org/euclid.acta/1485889765


Export citation

References

  • Duistermaat, J. & Hörmander, L., Fourier integral operators. II. Acta Math., 128 (1971), 183–269.
  • Egorov, Yu. V., On subelliptic pseudodifferential operators. Dokl. Akad. Nauk SSSR 188 (1969), 20–22. Also in Soviet Math. Dokl., 10 (1969), 1056–1059.
  • —, On canonical transformations of pseudodifferential operators. Uspehi Mat. Nauk, 25 (1969), 235–236.
  • —, Non degenerate subelliptic pseudodifferential operators. Mat. Sb., 82 (124) (1970). 324–342. Also in Math. USSR-Sb., 11 (1970) 291–308.
  • Egorov, Yu. V. & Kondratev, V. A., The oblique derivative problem. Mat. Sb., 78 (120) (1969), 148–176. Also in Math. USSR-Sb., 7 (1969), 139–169.
  • Eškin, G. I., Degenerating elliptic pseudodifferential equations of principal type. Mat. Sb., 82 (124) (1970), 585–628. Also in Math. USSR-Sb., 11 (1970), 539–582.
  • —, Elliptic pseudodifferential operators degenerating to first order in the space variables. Trudy Moscov. Mat. Obšč. 25 (1971) 83–118.
  • Hörmander, L., Linear-partial differential operators. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, 116. Springer-Verlag, 1963.
  • Hörmander, L., Pseudodifferential operators and hypoelliptic equations. Amer. Math. Soc. Symp. on Singular Integral Operators, 1966, 138–183.
  • —, Pseudodifferential operators and non-elliptic boundary problems. Ann. of Math., 83 (1966), 129–209.
  • —, Fourier integral operators I. Acta Math., 127 (1971) 79–183.
  • —, On the existence and regularity of solutions of linear pseudodiffernetial operators. L'Enseignement Math., 17–2 (1971), 99–163.
  • Kawai, T., Construction of local elementary solutions for linear partial differential operators with real analytic coefficients. Publ. Res. Inst. Math. Sci., Kyoto, Vol. 7, no. 2 (1971), 363–426.
  • Mazja, V. G. & Paneja, B. P., Degenerate elliptic pseudodifferential operators on a smooth manifold without boundary. Functional Anal. i Priložen, 3, 1969, 91–92. Also in Functional Anal. Appl. Vol. 3 no 2 (1969), 159–160.
  • Nirenberg, L., A proof of the Malgrange preparation theorem. Proc. Liverpool Singularities —Sympos. I, Dept. pure Math Univ. Liverpool 1969–1970, 97–105 (1971).
  • Nirenberg, L. & Trèves, F., On local solvability of linear partial differential equations. Part I and II. Comm. Pure Appl. Math., 23 (1970), 1–38 and 459–510. Correction of Part II in Comm. Fure Appl. Math. 24 (1971) 279–288.
  • Sjöstrand, J., Sur une classe d'opérateurs pseudodifferentiels de type principal. C. R. Acad. Sci. Paris Ser A-13, 271 (1970), 781–783.
  • Sternberg, S., Lectures on differential geometry. Prentice Hall, 1965.
  • Trèves, F., A new method of proof of the subelliptic estimates. Comm. Pure Appl. Math. 24 (1971) 71–115.
  • Višik, M. I. & Grušin, V. V., Elliptic pseudodifferential operators on a closed manifold, which degenerate on a submanifold. Dokl. Akad. Nauk SSSR 189 (1969), 16–19. Also in Soviet Math. Dokl. 10 (1969), 1316–1320.
  • Višik, M. I. Elliptic boundary value problems degenerating on a submanifold of the boundary. Dokl. Akad. Nauk SSSR (1970) 255–258. Also in Soviet Math. Dokl. 11 (1970), 60–63.