Acta Mathematica

Fourier integral operators. II

J. J. Duistermaat and L. Hörmander

Full-text: Open access

Note

Supported in part by NSF Grant GP-27176 at Courant Institute, New York University, NSF Grant GP-7952X2 at the Institute for Advanced Study, Princeton, and AFOSR contract F44620-69-C-0106 at Stanford University.

Note

This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Source
Acta Math., Volume 128 (1972), 183-269.

Dates
Received: 3 September 1971
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889724

Digital Object Identifier
doi:10.1007/BF02392165

Mathematical Reviews number (MathSciNet)
MR388464

Zentralblatt MATH identifier
0232.47055

Rights
1972 © Almqvist & Wiksells Boktryckeri AB

Citation

Duistermaat, J. J.; Hörmander, L. Fourier integral operators. II. Acta Math. 128 (1972), 183--269. doi:10.1007/BF02392165. https://projecteuclid.org/euclid.acta/1485889724


Export citation

References

  • Andersson, K. G., Propagation of analyticity of solutions of partial differential equations with constant coefficients. Ark. Mat. 8 (1970), 277–302.
  • Birkhoff, G. D., Dynamical systems. Amer. Math. Soc. Coll. Publ. 9, New York, 1927.
  • Bourbaki, N., Espaces vectoriels topologiques. Paris, 1953–55.
  • Bjorken, J. D. & Drell, S., Relativistic quantum fields. Mc Graw-Hill, New York, 1965.
  • Courant, R. & Lax, P. D., The propagation of discontinuities in wave motion. Proc. Nat. Acad. Sci. USA 42 (1956), 873–876.
  • DeWitt, B. S., Dynamical theory of groups and fields. Relativity, groups and topology, 585–820. Gordon and Breach, New York-London 1964.
  • Dieudonne, J. & Schwartz, L., La dualité dans les espaces (£) et (ℒ£). Ann. Inst. Fourier (Grenoble), 1 (1949), 61–101.
  • Dugundji, J. & Antosiewicz, H. A., Parallelizable flows and Lyapunov's second method. Ann. of Math. 73 (1961), 543–555.
  • Gårding, L., Kotake, T. & Leray, J., Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire, à données holomorphes; analogie avec la théorie des ondes asymptotiques et approchées (Problème de Cauchy Ibis et VI). Bull. Soc. Math. France, 92 (1964), 263–361.
  • Grušin, V. V., The extension of smoothness of solutions of differential equations of principal type. Dokl. Akad. Nauk SSSR, 148 (1963), 1241–1244. Also in Soviet Math. Dokl. 4 (1963), 248–252.
  • Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Hermann, Paris 1932.
  • Haefliger, A., Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367–397.
  • Hörmander, L., Introduction to complex analysis in several variables. D. van Nostrand Publ. Co., Princeton, N. J. 1965.
  • —, Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83 (1966), 129–209.
  • —, On the singularities of solutions of partial differential equations. Comm. Pure Appl. Math. 23 (1970), 329–358.
  • —, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Comm. Pure Appl. Math., 24 (1971), 671–704.
  • —, Linear differential operators. Actes Congr. Intern. Math. Nice, 1970, 1, 121–133.
  • —, On the existence and the regularity of solutions of linear pseudo-differential equations. L'Enseignement Math. 17 (1971), 99–163.
  • Palais, R., A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc., 22 (1957).
  • Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier (Grenoble), 6 (1955–56), 271–355.
  • Riesz, M., L'intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math., 81 (1949), 1–223.
  • Steenrod, N., The topology of fiber bundles. Princeton Univ. Press, Princeton 1951.
  • Unterberger, A. & Bokobza, J., Les opérateurs pseudo-différentiels d'ordre variable. C. R. Acad. Sci. Paris, 261 (1965), 2271–2273.
  • Whitney, H., Regular families of curves. Ann. of Math., 34 (1933), 244–270.
  • Zerner, M., Solutions singulières d'équations aux dérivées partielles. Bull. Soc. Math. France, 91 (1963), 203–226.