Acta Mathematica
- Acta Math.
- Volume 127 (1971), 79-183.
Fourier integral operators. I
Full-text: Open access
Article information
Source
Acta Math., Volume 127 (1971), 79-183.
Dates
Received: 19 December 1970
First available in Project Euclid: 31 January 2017
Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889699
Digital Object Identifier
doi:10.1007/BF02392052
Mathematical Reviews number (MathSciNet)
MR388463
Zentralblatt MATH identifier
0212.46601
Rights
1971 © Almqvist & Wiksells Boktryckeri AB
Citation
Hörmander, Lars. Fourier integral operators. I. Acta Math. 127 (1971), 79--183. doi:10.1007/BF02392052. https://projecteuclid.org/euclid.acta/1485889699
References
- Arnold, V. I., On a characteristic class which enters in quantization conditions. Funkt. anal. i ego pril., 1 (1967), 1–14 (Russian.). English translation Funct. anal. appl., 1 (1967), 1–13.
- Atiyah, M. F., K-theory. Benjamin 1968.
- Atiyah, M. F. & Bott, R., A Lefschetz fixed point formula, for elliptic complexes I. Ann. of Math., 86 (1967), 374–407.
- Bokobza-Haggiag, J., Opérateurs pseudo-différentiels sur une variété différentiable. Ann. Inst. Fourier, Grenoble, 19 (1969), 125–177.
- Buslaev, V. S., The generating integral and the canonical Maslov operator in the WKB method, Funkt anal. i ego pril., 3:3 (1969), 17–31 (Russian). English translation Funct. anal. appl., 3 (1969), 181–193.
- Carathéodory, C., Variationsrechnung und partielle Differentialgleichungen Erster Ordnung. Teubner, Berlin, 1935.
- Egorov, Yu. V., On canonical transformations of pseudo-differential operators. Uspehi Mat. Nauk. 25 (1969), 235–236.
- —, On non-degenerate hypoelliptic pseudo-differential operators. Doklady Akad. Nauk SSSR. 186 (1969), 1006–1007. (Russian.) English translation Soviet Math. Doklady, 10 (1969), 697–699.Zentralblatt MATH: 0193.38201
- Eškin, G. I., The Cauchy problem for hyperbolic systems in convolutions. Mat. Sbornik, 74 (116) (1967), 262–297 (Russian). English translation Math. USSR — Sbornik, 3 (1967), 243–277.
- Friedrichs, K., Pseudo-differential operators. An introduction. Lecture notes, Courant Institute, New York University 1968.
- Hirzebruch, P., Topological methods in algebraic geometry. Grundlehren der Math. Wiss. 131, Springer-Verlag 1966.
- Hörmander, L., Pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), 501–517.
- —, Pseudo-differential operators and hypoelliptic equations. Amer. Math. Soc. Symp. Pure Math., 10 (1966), Singular integral operators, 138–183.
- —, The spectral function of an elliptic operator. Acta Math., 121 (1968) 193–218.Digital Object Identifier: doi:10.1007/BF02391913
Zentralblatt MATH: 0164.13201
Mathematical Reviews (MathSciNet): MR609014 - Hörmander, L., On the singularities of solutions of partial differential equations. Conf. on Funct. Anal. and Related Topics, Tokyo 1969, 31–40.
- Hörmander, L., The calculus of Fourier integral operators. Conference on Prospects in Mathematics, Princeton University Press, 1971.
- Hörmander, L., Linear partial differential operators. Grundlehren d. Math. Wiss. 116. Springer-Verlag, 1963.
- Keller, J. B., Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems. Ann. of Physics, 4 (1958), 180–188.
- Kohn, J. J., & Nirenberg, L., On the algebra of pseudo-differential operators. Comm. Pure Appl. Math., 18 (1965), 269–305.
- Kumano-go, H., Remarks on pseudo-differential operators J. Math. Soc. Japan, 21 (1969), 413–439.
- Lax, P. D., Asymptotic solutions of oscillatory initial value problems. Duke Math. J., 24 (1957), 627–646.Digital Object Identifier: doi:10.1215/S0012-7094-57-02471-7
Zentralblatt MATH: 0083.31801
Mathematical Reviews (MathSciNet): MR97628 - Ludwig, D., Exact and asymptotic solutions of the Cauchy problem. Comm. Pure Appl. Math., 13 (1960), 473–508.
- Maslov, V. P., Theory of pertubations and asymptotic methods. Moskov. Gos. Univ., Moscow, 1965 (Russian).
- Nirenberg, L., Pseudo-differential operators. Amer. Math. Soc. Symp. Pure Math., 16 (1970), 149–167.
- Nirenberg, L. & Trèves, F., On local solvability of linear partial differential equations. Part I: Necessary conditions. Part II: Sufficient conditions. Comm. Pure Appl. Math., 23 (1970), 1–38 and 459–510.
- Palais, R., Seminar on the Atiyah-Singer index theorem. Annals of Mathematics Studies 57, 1965.
- Sato, M., Hyperfunctions and partial differential equations. Conf. on Functional Analysis and Related Topics, Tokyo 1969 91–94.
- Sternberg, S., Lectures on differential geometry. Prentice Hall, 1965.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Integration of Fourier-Legendre series
Love, E. Russell, Real Analysis Exchange, 1997 - Generalized Fourier-Stieltjes algebra
Bagheri-Bardi, G. A., Tsukuba Journal of Mathematics, 2015 - Green's Function and Convergence of Fourier Series for Elliptic
Differential Operators with Potential from Kato Space
Serov, Valery, Abstract and Applied Analysis, 2010
- Integration of Fourier-Legendre series
Love, E. Russell, Real Analysis Exchange, 1997 - Generalized Fourier-Stieltjes algebra
Bagheri-Bardi, G. A., Tsukuba Journal of Mathematics, 2015 - Green's Function and Convergence of Fourier Series for Elliptic
Differential Operators with Potential from Kato Space
Serov, Valery, Abstract and Applied Analysis, 2010 - Fast Computation of Singular Oscillatory Fourier Transforms
Kang, Hongchao and Shao, Xinping, Abstract and Applied Analysis, 2014 - Can adaptive estimators for Fourier series be of interest to wavelets?
Efromovich, Sam, Bernoulli, 2000 - Some Weighted Estimates for Multilinear Fourier Multiplier
Operators
Si, Zengyan, Abstract and Applied Analysis, 2013 - Geometry of pseudodifferential algebra bundles and Fourier integral operators
Mathai, Varghese and Melrose, Richard B., Duke Mathematical Journal, 2017 - Chapter VIII. Fourier Transform in Euclidean Space
Anthony W. Knapp, Basic Real Analysis, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016 - Optimal control of singular Fourier multipliers by maximal operators
Bennett, Jonathan, Analysis & PDE, 2014 - Fourier integral operators of infinite order and applications to SG-hyperbolic equations
Cappiello, Marco, Tsukuba Journal of Mathematics, 2004
