Acta Mathematica

The λ(φ4)2 quantum field theory without cutoffsquantum field theory without cutoffs: III. The physical vacuum

James Glimm and Arthur Jaffe

Full-text: Open access

Note

Supported in part by the New York State Science and Technology Foundation, Grant SSF-(8)-8.

Note

Supported in part by the Air Force Office of Scientific Research, AF 49 (638)-1380.

Article information

Source
Acta Math. Volume 125 (1970), 203-267.

Dates
Received: 7 November 1969
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889667

Digital Object Identifier
doi:10.1007/BF02392335

Rights
1970 © Almqvist & Wiksells Boktryckeri AB

Citation

Glimm, James; Jaffe, Arthur. The λ( φ 4 ) 2 quantum field theory without cutoffsquantum field theory without cutoffs: III. The physical vacuum. Acta Math. 125 (1970), 203--267. doi:10.1007/BF02392335. https://projecteuclid.org/euclid.acta/1485889667


Export citation

References

  • Araki, H., The type of von Neumann algebra associated with the free field. Progr. of Theor. Phys., 32 (1964), 956–965.
  • Dixmier, J., Les algèbres d'opérateurs dans l'espace Hilbertien (algèbres de von Neumann). Gauthiers-Villars, Paris, 1957.
  • Epstein, H., Glaser, V. & Jaffe, A., Nonpositivity of the energy density in quantized field theories. Nuovo Cimento, 36 (1965), 1016–1022.
  • Federbush, P., A partially alternate derivation of a result of Nelson. J. Math. Phys., 10 (1969), 50–52.
  • Fell, J., The dual spaces of C*-algebras. Trans. Amer. Math. Soc., 94 (1960), 365–403.
  • Galindo, A., On a class of perturbations in quantum field theory. Proc. Nat. Acad. Sci. (U.S.A.), 48 (1962), 1128–1134.
  • Glimm, J., A Stone-Weierstrass theorem for C*-algebras. Ann. of Math., 72 (1960), 216–244.
  • —, Boson fields with nonlinear selfinteraction in two dimensions. Commun. Math. Phys., 8 (1968), 12–25.
  • Glimm, J., Varenna summer school-lectures, 1968. Academic Press.
  • Glimm, J. & Jaffe, A., A 266-1 quantum field theory without cutoffs I. Phys. Rev., 176 (1968), 1945–1951.
  • —, Singular perturbations of self adjoint operators. Comm. Pure Appl. Math., 22 (1969), 401–414.
  • —, The 266-2 quantum field theory without cutoffs II. The field operators and the approximate vacuum. Ann. of Math., 91 (1970), 362–401.
  • —, An infinite renormalization of the Hamiltonian is necessary. J. Math. Phys., 10 (1969), 2213–2214.
  • Griffin, E., Some contributions to the theory of rings of operators II. Trans. Amer. Math. Soc., 79 (1955), 389–400.
  • Haag, R. & Kastler, D., An algebraic approach to quantum field theory. J. Math. Phys., 5 (1964), 848–861.
  • Hall, D. & Wightman, A., A theorem on invariant functions with applications to relativistic quantum field theory. Mat.-Fys. Medd. Kongl. Danske Vidensk. Selskab, 31 (1957) No. 5.
  • Hepp, K., Théorie de la renormalisation, Springer Verlag, New York, 1969.
  • Jaffe, A., Divergence of perturbation theory for bosons. Commun. Math. Phys., 1 (1965), 127–149.
  • Jaffe, A., Varenna summer school lectures, 1968. Academic Press.
  • Kristensen, P., Mejlbo, L. & Poulsen E., Tempered distributions in infinitely many dimensions I. Commun. Math. Phys., 1 (1965), 175–214.
  • Naimark, M., Normed rings. Noordhoff, Groningen, 1959.
  • Nelson, E., A quartic interaction in two dimensions. In Mathematical theory of elementary particles, edited by R. Goodman and I. Segal, M.I.T. Press 1966.
  • Segal, I., Nonlinear functions of weak processes I. J. Functional Anal., 4 (1969), 404–456.
  • Streit, L., A generalization of Haag's theorem. Nuovo Cimento, to appear.
  • Watson, G., A treatise on the theory of Bessel functions. Cambridge 1944.
  • Weinberg, S., High energy behavior in quantum field theory. Phys. Rev., 118 (1960), 838–849.
  • Cannon, J. & Jaffe, A., Lorentz covariance of the 267-1 quantum field theory. Commun. Math. Phys., 17 (1970), 261–321.
  • Rosen, L., A 267-2 field theory without cutoffs. Commun. Math. Phys., 16 (1970), 157–183.