Acta Mathematica

Half-order differentials on Riemann surfaces

N. S. Hawley and M. Schiffer

Full-text: Open access

Dedication

Dedicated to Professor R. Nevanlinna on the occasion of his 70th birthday

Note

This work was supported in part by National Science Foundation grant GP 4069 and Air Force contract AF 49(638) 1345 at Stanford University.

Note

This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Source
Acta Math., Volume 115 (1966), 199-236.

Dates
Received: 31 July 1965
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889463

Digital Object Identifier
doi:10.1007/BF02392208

Mathematical Reviews number (MathSciNet)
MR190326

Zentralblatt MATH identifier
0136.06701

Rights
1966 © Almqvist & Wiksells Boktryckeri AB

Citation

Hawley, N. S.; Schiffer, M. Half-order differentials on Riemann surfaces. Acta Math. 115 (1966), 199--236. doi:10.1007/BF02392208. https://projecteuclid.org/euclid.acta/1485889463


Export citation

Bibliography

  • Ahlfors, L. V., Teichmüller spaces. Proc. Intern. Congr. Math., Stockholm 1962, 3–9.
  • Appell, P. & Goursat, E., Théorie des fonctions algébriques, t. II. Paris 1930.
  • Bergman, S., Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen. Math. Ann., 86 (1922), 238–271.
  • —, The kernel function and conformal mapping. Amer. Math. Soc. Survey, New York 1950.
  • Bergman, S. & Schiffer, M., Kernel functions and conformal mapping. Compositio Math., 8 (1951), 205–249.
  • Bers, L., Spaces of Riemann surfaces. Proc. Intern. Congr. Math., Edinburgh 1958, 349–361.
  • Bers, L., Automorphic forms and general Teichmüller spaces. Proc. Conf. Complex Anal., Minneapolis, 1964, 109–113.
  • Courant, R., Dirichlet's principle, conformal mapping and minimal surfaces. Appendix by M. Schiffer. New York 1950.
  • Garabedian, P. R., Schwarz's lemma and the Szegö kernel function. Trans. Amer. Math. Soc., 67 (1949), 1–35.
  • Hensel, K. & Landsberg, G., Theorie der algebraischen Funktionen einer Variabeln. Leipzig 1902.
  • Hille, E., Remarks on a paper by Zeev Nehari. Bull. Amer. Math. Soc., 55 (1949), 552–553.
  • Krazer, A., Lehrbuch der Thetafunktionen. Leipzig 1903.
  • Nehari, Z., The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc., 55 (1949), 545–551.
  • Schiffer, M., Hadamard's formula and variation of domain functions. Amer. J. Math., 68 (1946), 417–448.
  • —, Faber polynomials in the theory of univalent functions. Bull. Amer. Math. Soc., 54 (1948), 503–517.
  • —, Various types of orthogonalization. Duke Math. J., 17, (1950), 329–366.
  • Schiffer, M., Variational methods in the theory of Rieman surfaces. Contributions to the theory of Riemann surfaces, Princeton 1953, 15–30.
  • Schiffer, M. & Hawley, N. S., Connections and conformal mapping. Acta Math., 107 (1962), 175–274.
  • Schiffer, M. & Spencer, D. C., A variational calculus for Riemann surfaces. Ann. Acad. Scient. Fenn. Ser. A I, 93, Helsinki 1951.
  • Schiffer, M. & Spencer, D. C.Functionals of finite Riemann surfaces. Princeton 1954.
  • Szegö, G., Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören. Math. Z., 9 (1921), 218–270.
  • Weyl, H., Die Idee der Riemannschen Fläche. 3. Aufl., Stuttgart 1955.