Acta Mathematica

Local behavior of solutions of quasi-linear equations

James Serrin

Full-text: Open access

Note

This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Source
Acta Math. Volume 111 (1964), 247-302.

Dates
Received: 17 October 1963
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889382

Digital Object Identifier
doi:10.1007/BF02391014

Zentralblatt MATH identifier
0128.09101

Rights
1964 © Almqvist & Wiksells Boktryckeri AB

Citation

Serrin, James. Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247--302. doi:10.1007/BF02391014. https://projecteuclid.org/euclid.acta/1485889382


Export citation

References

  • Carleson, L., Selected problems on exceptional sets. Uppsala, 1961. (Mimeographed.)
  • Finn, R., Isolated singularities of solutions of non-linear partial differential equations. Trans. Amer. Math. Soc. 75 (1953), 385–404.
  • Gevrey, M., Sur une généralisation du principe des singularités positives de M. Picard. C. R. Acad. Sci. Paris, 211 (1940), 581–584.
  • Gilbarg, D., Some local properties of elliptic equations. Proceedings of Symposia on Pure Mathematics, Vol. 4, Partial Differential Equations, pp. 127–142. Amer. Math. Soc., Providence, R.I., 1961.
  • —, Boundary value problems for non-linear elliptic equations. Nonlinear Problems, pp. 151–160. Univ. of Wisconsin Press, Madison, 1963.
  • Gilbarg, D. & Serrin, J., On isolated singularities of solutions of second order elliptic differential equations. J. d'Analyse Math., 4 (1955–1956), 309–340.
  • John, F. & Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure. Appl. Math., 14 (1961), 415–426.
  • Ladyzhenskaya, O. A. & Uraltseva, N. N., Quasi-linear elliptic equations and variational problems with many independent variables. Uspehi Mat. Nauk, 16 (1961), 19–92; translated in Russian Math. Surveys, 16 (1961), 17–91.
  • —, On the smoothness of weak solutions of quasi-linear equations in several variables and of variational problems. Comm. Pure Appl. Math., 14 (1961), 481–495.
  • Littman, W., Stampacchia, G. & Weinberger, H., Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa, Ser. III, 17 (1963), 45–79.
  • Mazya, V. C., Some estimates for the solutions of second order elliptic equations. Dokl. Akad. Nauk SSSR, 137 (1961), 1057–1059; translated in Soviet Math. Dokl., 2 (1961), 413–415.
  • —, p-conductance and theorems of imbedding certain function spaces into the space C. Dokl. Akad. Nauk SSSR, 140 (1961), 299–302; translated in Soviet Math. Dokl., 2 (1961), 1200–1203.
  • Morrey, C. B., Jr., Second order elliptic equations and Hölder continuity. Math. Z., 72 (1959), 146–164.
  • —, Multiple integral problems in the calculus of variations and related topics. Ann. Scuola Norm. Sup. Pisa, 14 (1960), 1–62.
  • — Existence and differentiability theorems for variational problems for multiple integrals. Partial Differential Equations and Continuum Mechanics, pp. 241–270. Univ. of Wisconsin Press, Madison, 1961.
  • Moser, J., A new proof of De giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., 13 (1960), 457–468.
  • —, On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math., 14 (1961), 577–591.
  • Nirenberg, L., On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13 (1959), 1–48.
  • Picone, M., Sur la théorie d'un équation aux derivées partielles classique de la physique mathématique. C. R. Acad. Sci. Paris, 266 (1948), 1945–1947. Cf. also, Sulle singularitá delle soluzioni di una elassica equazione a derivate parziali delle fisica matematica. Atti 3° Congresso U.M.I., pp. 69–71. Rome, 1951.
  • Royden, H., The growth of a fundamental solution of an elliptic divergence structure equation. Studies in Mathematical Analysis and Related Topics: Essays in honor of G. Polya, pp. 333–340. Stanford Univ. Press, Stanford, 1962.
  • Serrin, J., Dirichlet's principle in the calculus of variations. Proceedings of Symposia on Pure Mathematics, Vol. 4, Partial Differential Equations, pp. 17–22. Amer. Math. Soc., Providence, R.I., 1961.
  • —, A Harnack inequality for nonlinear equations. Bull. Amer. Math. Soc., 69 (1963), 481–486.
  • Stampacchia, G., Régularisation des solutions de problèmes aux limites elliptiques à données discontinues. Intern. Symposium on Linear Spaces, pp. 399–408. Jerusalem, 1960.
  • —, Problemi al contorno ellittici, con dati discontinui dotati di soluzioni hölderiane. Ann. Pura Appl., 51 (1960), 1–38.
  • —, On some multiple integral problems in the calculus of variations. Comm. Pure Appl. Math., 16 (1963), 382–422.
  • Wallin, H., A connection between α-capacity and Lp-classes of differentiable functions. Ark. Mat., 5 (1964), 331–341.