Acta Mathematica

On the boundary theory for Markov chains

Kai Lai Chung

Full-text: Open access

Note

This research is supported in part by the Office of Scientific Research of the United States Air Force.

Article information

Source
Acta Math. Volume 110 (1963), 19-77.

Dates
Received: 8 March 1963
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889353

Digital Object Identifier
doi:10.1007/BF02391854

Zentralblatt MATH identifier
0292.60121

Rights
1963 © Almqvist & Wiksells Boktryckeri AB

Citation

Chung, Kai Lai. On the boundary theory for Markov chains. Acta Math. 110 (1963), 19--77. doi:10.1007/BF02391854. https://projecteuclid.org/euclid.acta/1485889353


Export citation

References

  • Chung, K. L., Markov Chains with Stationary Transition Probabilities. Springer, Berlin Göttingen, Heidelberg, 1960.
  • —, On last exit times. Illinois J. Math., 4 (1960), 629–39.
  • —, Probabilistic Methods in Markov Chains. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, 35–56, 1961. University of California Press, Berkeley and Los Angeles.
  • —, On the Martin boundary for Markov chains. Proc. Nat. Acad. Sci., 48 (1962), 963–968.
  • Doob, J. L., Discrete potential theory and boundaries. J. Math. Mech., 8 (1959), 433–458.
  • Feller, W., Boundaries induced by positive matrices. Trans. Amer. Math. Soc., 83 (1956), 19–54.
  • —, On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. of Math., 65 (1957), 527–570; “Notes”, ibid. Ann. of Math., 68 (1958), 735–736.
  • Hunt, G. A., Markoff chains and Martin boundaries. Illinois J. Math., 4 (1960), 313–340.
  • Lévy, P., Systèmes markoviens et stationnaires; cas dénombrable. Ann. École Norm. (3), 68 (1951), 327–381.
  • Neveu, J., Une généralisation des processus à accroisements croissants indépendants. Abh. Math. Mem. Univ. Hamburg, 25 (1961), 36–61.
  • —, Lattice methods and submarkovian processes. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, 347–391, 1961. University of California Press, Berkeley and Los Angeles.
  • Reuter, G. E. H., Denumerable Markov processes and the associated contraction semiproups on l. Acta Math., 97 (1957), 1–46.
  • —, Denumerable Markov processes (II). J. London Math. Soc., 34 (1959), 81–91.
  • —, Denumerable Markov processes (III). Ibid., 37 (1962), 63–73.